ترغب بنشر مسار تعليمي؟ اضغط هنا

History and modes of star formation in the most active region of the Small Magellanic Cloud, NGC 346

154   0   0.0 ( 0 )
 نشر من قبل Michele Cignoni
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Cignoni




اسأل ChatGPT حول البحث

We discuss the star formation history of the SMC region NGC 346 based on Hubble Space Telescope images. The region contains both field stars and cluster members. Using a classical synthetic CMD procedure applied to the field around NGC 346 we find that there the star formation pace has been rising from a quite low rate 13 Gyr ago to approx 1.4 times 10^{-8} Mo yr^{-1}pc^{-2} in the last 100 Myr. This value is significantly higher than in other star forming regions of the SMC. For NGC 346 itself, we compare theoretical and observed Color-Magnitude Diagrams (CMDs) of several stellar sub-clusters identified in the region, and we derive their basic evolution parameters. We find that NGC 346 experienced different star formation regimes, including a dominant and focused high density mode, with the sub-clusters hosting both pre-main sequence (PMS) and upper main sequence (UMS) stars, and a diffuse low density mode, as indicated by the presence of low-mass PMS sub-clusters. Quantitatively, the star formation in the oldest sub-clusters started about 6 Myr ago with remarkable synchronization, it continued at high rate (up to 2 times 10^{-5} Mo yr^{-1} pc^{-2}) for about 3 Myr and is now progressing at a lower rate. Interestingly, sub-clusters mainly composed by low mass PMS stars seem to experience now the first episode of star formation, following multi-seeded spatial patterns instead of resulting from a coherent trigger. Two speculative scenarios are put forth to explain the deficiency of UMS stars: the first invokes under-threshold conditions of the parent gas; the second speculates that the initial mass function (IMF) is a function of time, with the youngest sub-clusters not having had sufficient time to form more massive stars.



قيم البحث

اقرأ أيضاً

Stellar feedback, expanding HII regions, wind-blown bubbles, and supernovae are thought to be important triggering mechanisms of star formation. Stellar associations, being hosts of significant numbers of early-type stars, are the loci where these me chanisms act. In this part of our photometric study of the star-forming region NGC346/N66 in the Small Magellanic Cloud, we present evidence based on previous and recent detailed studies, that it hosts at least two different events of triggered star formation and we reveal the complexity of its recent star formation history. In our earlier studies of this region (Papers I, III) we find that besides the central part of N66, where the bright OB stellar content of the association NGC346 is concentrated, an arc-like nebular feature, north of the association, hosts recent star formation. This feature is characterized by a high concentration of emission-line stars and Young Stellar Objects, as well as embedded sources seen as IR-emission peaks that coincide with young compact clusters of low-mass pre-main sequence stars. All these objects indicate that the northern arc of N66 encompasses the most current star formation event in the region. We present evidence that this star formation is the product of a different mechanism than that in the general area of the association, and that it is triggered by a wind-driven expanding HII region (or bubble) blown by a massive supernova progenitor, and possibly other bright stars, a few Myr ago. We propose a scenario according to which this mechanism triggered star formation away from the bar of N66, while in the bar of N66 star formation is introduced by the photo-ionizing OB stars of the association itself.
311 - M. Cignoni 2012
The Bar is the most productive region of the Small Magellanic Cloud in terms of star formation but also the least studied one. In this paper we investigate the star formation history of two fields located in the SW and in the NE portion of the Bar us ing two independent and well tested procedures applied to the color-magnitude diagrams of their stellar populations resolved by means of deep HST photometry. We find that the Bar experienced a negligible star formation activity in the first few Gyr, followed by a dramatic enhancement from 6 to 4 Gyr ago and a nearly constant activity since then. The two examined fields differ both in the rate of star formation and in the ratio of recent over past activity, but share the very low level of initial activity and its sudden increase around 5 Gyr ago. The striking similarity between the timing of the enhancement and the timing of the major episode in the Large Magellanic Cloud is suggestive of a close encounter triggering star formation.
419 - M. Cignoni 2013
We derive the star formation history in four regions of the Small Magellanic Cloud (SMC) using the deepest VI color-magnitude diagrams (CMDs) ever obtained for this galaxy. The images were obtained with the Advanced Camera for Surveys onboard the Hub ble Space Telescope and are located at projected distances of 0.5-2 degrees from the SMC center, probing the main body and the wing of the galaxy. We derived the star-formation histories (SFH) of the four fields using two independent procedures to fit synthetic CMDs to the data. We compare the SFHs derived here with our earlier results for the SMC bar to create a deep pencil-beam survey of the global history of the central SMC. We find in all the six fields observed with HST a slow star formation pace from 13 to 5-7 Gyr ago, followed by a ~ 2-3 times higher activity. This is remarkable because dynamical models do not predict a strong influence of either the LMC or the Milky Way (MW) at that time. The level of the intermediate-age SFR enhancement systematically increases towards the center, resulting in a gradient in the mean age of the population, with the bar fields being systematically younger than the outer ones. Star formation over the most recent 500 Myr is strongly concentrated in the bar, the only exception being the area of the SMC wing. The strong current activity of the latter is likely driven by interaction with the LMC. At a given age, there is no significant difference in metallicity between the inner and outer fields, implying that metals are well mixed throughout the SMC. The age-metallicity relations we infer from our best fitting models are monotonically increasing with time, with no evidence of dips. This may argue against the major merger scenario proposed by Tsujimoto and Bekki 2009, although a minor merger cannot be ruled out.
237 - Joshua D. Simon 2007
We use Spitzer Space Telescope observations from the Spitzer Survey of the Small Magellanic Cloud (S3MC) to study the young stellar content of N66, the largest and brightest HII region in the SMC. In addition to large numbers of normal stars, we dete ct a significant population of bright, red infrared sources that we identify as likely to be young stellar objects (YSOs). We use spectral energy distribution (SED) fits to classify objects as ordinary (main sequence or red giant) stars, asymptotic giant branch stars, background galaxies, and YSOs. This represents the first large-scale attempt at blind source classification based on Spitzer SEDs in another galaxy. We firmly identify at least 61 YSOs, with another 50 probable YSOs; only one embedded protostar in the SMC was reported in the literature prior to the S3MC. We present color selection criteria that can be used to identify a relatively clean sample of YSOs with IRAC photometry. Our fitted SEDs indicate that the infrared-bright YSOs in N66 have stellar masses ranging from 2 Msun to 17 Msun, and that approximately half of the objects are Stage II protostars, with the remaining YSOs roughly evenly divided between Stage I and Stage III sources. We find evidence for primordial mass segregation in the HII region, with the most massive YSOs being preferentially closer to the center than lower-mass objects. Despite the low metallicity and dust content of the SMC, the observable properties of the YSOs appear consistent with those in the Milky Way. Although the YSOs are heavily concentrated within the optically bright central region of N66, there is ongoing star formation throughout the complex and we place a lower limit on the star formation rate of 3.2 x 10^-3 Msun/yr over the last ~1 Myr.
We present a photometric study of the star-forming region NGC 346 and its surrounding field in the Small Magellanic Cloud, using data taken with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). The data set contains bo th short and long exposures for increased dynamic range, and photometry was performed using the ACS module of the stellar photometry package DOLPHOT. We detected almost 100,000 stars over a magnitude range of V ~ 11 to V ~ 28 mag, including all stellar types from the most massive young stars to faint lower main sequence and pre-main sequence stars. We find that this region, which is characterized by a plethora of stellar systems and interesting objects, is an outstanding example of mixed stellar populations. We take into account different features of the color-magnitude diagram of all the detected stars to distinguish the two dominant stellar systems: The stellar association NGC 346 and the old spherical star cluster BS 90. These observations provide a complete stellar sample of a field about 5 arcmin x 5 arcmin around the most active star-forming region in this galaxy. Considering the importance of these data for various investigations in the area, we provide the full stellar catalog from our photometry. This paper is the first part of an ongoing study to investigate in detail the two dominant stellar systems in the area and their surrounding field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا