ترغب بنشر مسار تعليمي؟ اضغط هنا

On the relevance of gravitational self-force corrections on parameter estimation errors for extreme-mass-ratio inspirals

194   0   0.0 ( 0 )
 نشر من قبل Eliu Huerta
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is not currently clear how important it will be to include conservative self-force (SF) corrections in the models for extreme-mass-ratio inspiral (EMRI) waveforms that will be used to detect such signals in LISA (Laser Interferometer Space Antenna) data. These proceedings will address this issue for circular-equatorial inspirals using an approximate EMRI model that includes conservative corrections at leading post-Newtonian order. We will present estimates of the magnitude of the parameter estimation errors that would result from omitting conservative corrections, and compare these to the errors that will arise from noise fluctuations in the detector. We will also use this model to explore the relative importance of the second-order radiative piece of the SF, which is not presently known.



قيم البحث

اقرأ أيضاً

Intermediate/Extreme mass ratio inspiral (IMRI/EMRI) system provides a good tool to test the nature of gravity in strong field. We construct the self-force and use the self-force method to generate accurate waveform templates for IMRIS/EMRIs on quasi -elliptical orbits in Brans-Dicke theory. The extra monopole and dipole emissions in Brans-Dicke theory accelerate the orbital decay, so the observations of gravitational waves may place stronger constraint on Brans-Dicke theory. With a two-year observations of gravitational waves emitted from IMRIs/EMRIs with LISA, we can get the most stringent constraint on the Brans-Dicke coupling parameter $omega_0>10^5$.
An extreme mass ratio inspiral takes place when a compact stellar object is inspiraling into a supermassive black hole due to gravitational radiation reaction. Gravitational waves (GWs) from this system can be calculated using the Teukolsky equation (TE). In our case, we compute the asymptotic GW fluxes of a spinning body orbiting a Kerr black hole by solving numerically the TE both in time and frequency domain. Our ultimate goal is to produce GW templates for space-based detectors such as LISA.
We describe a new class of resonances for extreme mass-ratio inspirals (EMRIs): tidal resonances, induced by the tidal field of nearby stars or stellar-mass black holes. A tidal resonance can be viewed as a general relativistic extension of the Kozai -Lidov resonances in Newtonian systems, and is distinct from the transient resonance already known for EMRI systems. Tidal resonances will generically occur for EMRIs. By probing their influence on the phase of an EMRI waveform, we can learn about the tidal environmental of the EMRI system, albeit at the cost of a more complicated waveform model. Observations by LISA of EMRI systems therefore have the potential to provide information about the distribution of stellar-mass objects near their host galactic-center black holes.
We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid met hod that combines tools from different approximation techniques in General Relativity: (i) A multipolar, post-Minkowskian expansion for the far-zone metric perturbation (the gravitational waveforms) and for the local prescription of the self-force; (ii) a post-Newtonian expansion for the computation of the multipole moments in terms of the trajectories; and (iii) a BH perturbation theory expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesics. The EMRI trajectory is made out of Kerr geodesic fragments joined via the method of osculating elements as dictated by the multipolar post-Minkowskian radiation-reaction prescription. We implemented the proper coordinate mapping between Boyer-Lindquist coordinates, associated with the Kerr geodesics, and harmonic coordinates, associated with the multipolar post-Minkowskian decomposition. The Chimera scheme is thus a combination of approximations that can be used to model generic inspirals of systems with extreme to intermediate mass ratios, and hence, it can provide valuable information for future space-based gravitational-wave observatories, like LISA, and even for advanced ground detectors. The local character in time of our multipolar post-Minkowskian self-force makes this scheme amenable to study the possible appearance of transient resonances in generic inspirals.
The extreme-mass-ratio inspirals (EMRIs) of stellar mass compact objects into massive black holes in the centres of galaxies are an important source of low-frequency gravitational waves for space-based detectors. We discuss the prospects for detectin g these sources with the evolved Laser Interferometer Space Antenna (eLISA), recently proposed as an ESA mission candidate under the name NGO. We show that NGO could observe a few tens of EMRIs over its two year mission lifetime at redshifts z < 0.5 and describe how the event rate changes under possible alternative specifications of the eLISA design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا