ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for an Intermediate Mass Black Hole in the Blue Compact Dwarf galaxy MRK 996

137   0   0.0 ( 0 )
 نشر من قبل Antonis Georgakakis
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Georgakakis




اسأل ChatGPT حول البحث

The possibility is explored that accretion on an intermediate mass black hole contributes to the ionisation of the interstellar medium of the Compact Blue Dwarf galaxy MRK996. Chandra observations set tight upper limits (99.7 per cent confidence level) in both the X-ray luminosity of the posited AGN, Lx(2-10keV)<3e40erg/s, and the black hole mass, <1e4/lambda Msolar, where lambda, is the Eddington ratio. The X-ray luminosity upper limit is insufficient to explain the high ionisation line [OIV]25.89mu m, which is observed in the mid-infrared spectrum of the MRK996 and is proposed as evidence for AGN activity. This indicates that shocks associated with supernovae explosions and winds of young stars must be responsible for this line. It is also found that the properties of the diffuse X-ray emission of MRK996 are consistent with this scenario, thereby providing direct evidence for shocks that heat the galaxys interstellar medium and contribute to its ionisation.



قيم البحث

اقرأ أيضاً

(abridged) We present new Spitzer, UKIRT and MMT observations of the blue compact dwarf galaxy (BCD) Mrk 996, with an oxygen abundance of 12+log(O/H)=8.0. This galaxy has the peculiarity of possessing an extraordinarily dense nuclear star-forming reg ion, with a central density of ~10^6 cm^{-3}. The nuclear region of Mrk 996 is characterized by several unusual properties: a very red color J-K = 1.8, broad and narrow emission-line components, and ionizing radiation as hard as 54.9 eV, as implied by the presence of the OIV 25.89 micron line. The nucleus is located within an exponential disk with colors consistent with a single stellar population of age >1 Gyr. The infrared morphology of Mrk 996 changes with wavelength. The IRS spectrum shows strong narrow Polycyclic Aromatic Hydrocarbon (PAH) emission, with narrow line widths and equivalent widths that are high for the metallicity of Mrk 996. Gaseous nebular fine-structure lines are also seen. A CLOUDY model requires that they originate in two distinct HII regions: a very dense HII region of radius ~580 pc with densities declining from ~10^6 at the center to a few hundreds cm^{-3} at the outer radius, where most of the optical lines arise; and a HII region with a density of ~300 cm^{-3} that is hidden in the optical but seen in the MIR. We suggest that the infrared lines arise mainly in the optically obscured HII region while they are strongly suppressed by collisional deexcitation in the optically visible one. The hard ionizing radiation needed to account for the OIV 25.89 micron line is most likely due to fast radiative shocks propagating in an interstellar medium. A hidden population of Wolf-Rayet stars of type WNE-w or a hidden AGN as sources of hard ionizing radiation are less likely possibilities.
New FUSE far-UV spectroscopy of the nearby metal-deficient (Zsun/8) cometary Blue Compact Dwarf (BCD) galaxy Markarian (Mrk) 59 is discussed. The data are used to investigate element abundances in its interstellar medium. The H I absorption lines are characterized by narrow cores which are interstellar in origin and by broad wings which are stellar in origin. The mean interstellar H I column density is ~ 7x10E20 cm-2 in Mrk 59. No H2 lines are seen and N(H2) is < 10E15 cm-2 at the 10 sigma level. The lack of diffuse H2 is due to the combined effect of a strong UV radiation field which destroys the H2 molecules and a low metallicity which leads to a scarcity of dust grains necessary for H2 formation. P-Cygni profiles of the S VI 933.4, 944.5 A and O VI 1031.9, 1037.6 A lines are seen, indicating the presence of very hot O stars and a stellar wind terminal velocity of ~ 1000 km/s. By fitting the line profiles with multiple components having each a velocity dispersion b = 7 km/s and spanning a radial velocity range of 100 km/s, some of which can be saturated, we derive heavy element abundances in the neutral gas. We find log N(O I)/N(H I) = -5.0+/-0.3 or [O I/H I] = -1.5 for the neutral gas, about a factor of 10 below the oxygen abundance of the supergiant H II region, implying self-enrichment of the latter.
121 - L.M. Cairos 2009
We present an integral field spectroscopic study of the central 2x2 kpc^2 of the blue compact dwarf galaxy Mrk 409, observed with the Potsdam MultiAperture Spectrophotometer. This study focuses on the morphology, two-dimensional chemical abundance pa ttern, excitation properties and kinematics of the ionized interstellar medium in the starburst component. We also investigate the nature of the extended ring of ionized gas emission surrounding the bright nuclear starburst region of Mrk 409. PMAS spectra of selected regions along the ring, interpreted with evolutionary and population synthesis models, indicate that their ionized emission is mainly due to a young stellar population with a total mass of ~1.5x10^6 M_sun, which started forming almost coevally ~10 Myr ago. This stellar component is likely confined to the collisional interface of a spherically expanding, starburst-driven super-bubble with denser, swept-up ambient gas, ~600 pc away from the central starburst nucleus. The spectroscopic properties of the latter imply a large extinction (C_H-beta>0.9), and the presence of an additional non-thermal ionization source, most likely a low-luminosity Active Galactic Nucleus. Mrk 409 shows a relatively large oxygen abundance (12+log(O/H)~8.4) and no chemical abundance gradients out to R~600 pc. The ionized gas kinematics displays an overall regular rotation on a northwest-southwest axis, with a maximum velocity of 60 km/s; the total mass inside the star-forming ring is about 1.4x10^9 M_sun.
We report the serendipitous discovery of a bright point source flare in the Abell cluster 1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a facto r of ~2300 over a time span of 6 years, following a power-law decay with index ~2.44+-0.40. The Chandra data alone vary by a factor of ~20. The spectrum is well fit by a blackbody with a constant temperature of kT~0.09 keV (~10^6 K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the one sigma level with the cluster (z=0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole with log(M_BH/M_sun)~5.5+-0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe black holes in the intermediate mass range, which are very difficult to study by other means.
We report the discovery of a dwarf Seyfert 1 active galactic nucleus (AGN) with a candidate intermediate-mass black hole hosted by the dwarf galaxy SDSS J160531.84+174826.1 at z=0.032. A broad component of the H-alpha line with FWHM=781 km/s is detec ted in its optical spectrum, and a bright, point-like nucleus is evident from a HST imaging observation. Non-thermal X-ray emission is also detected from the nucleus. The black hole mass, as estimated from the luminosity and width of the broad H-alpha component, is about 7x10^4 msun. The host galaxy appears to be a disk galaxy with a boxy bulge or nuclear bar; with an absolute magnitude of M_R = -17.8 (M_B = -16.4), it is among the least luminous host galaxies ever identified for a Seyfert 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا