ﻻ يوجد ملخص باللغة العربية
We present time dependent modeling based on the accretion disk limit cycle model for a 270 d light curve of the short period SU UMa-type dwarf nova V344 Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far surpass that generally available for long term light curves. The data encompass two superoutbursts and 17 normal (i.e., short) outbursts. The main decay of the superoutbursts is nearly perfectly exponential, decaying at a rate ~12 d/mag, while the much more rapid decays of the normal outbursts exhibit a faster-than-exponential shape. Our modeling using the basic accretion disk limit cycle can produce the main features of the V344 Lyr light curve, including the peak outburst brightness. Nevertheless there are obvious deficiencies in our model light curves: (1) The rise times we calculate, both for the normal and superoutbursts, are too fast. (2) The superoutbursts are too short. (3) The shoulders on the rise to superoutburst have more structure than the shoulder in the observed superoutburst and are too slow, comprising about a third to half of the total viscous plateau, rather than the ~10% observed. However, one of the alpha_{cold} -> alpha_{hot} interpolation schemes we investigate (one that is physically motivated) does yield longer superoutbursts with suitably short, less structured shoulders.
We have studied the short-cadence Kepler public light curves of SU UMa stars, V344 Lyr and V1504 Cyg extending over a period of more than two years by using power spectral analysis. We determined the orbital period of V344 Lyr to be Porb=0.087903(1)
We made a supplemental study of the superoutbursts and superhumps in SU UMa stars by using the recently released Kepler public data of V1504 Cyg and V344 Lyr. One of the superoutbursts in V1504 Cyg was preceded by a precursor normal outburst which wa
The wide-field synoptic sky surveys, known as the Palomar Transient Factory (PTF) and the intermediate Palomar Transient Factory (iPTF), will accumulate a large number of known and new RR Lyrae. These RR Lyrae are good tracers to study the substructu
Photometric instabilities of $beta$ Lyr were observed in 2016 by two red-filter BRITE satellites over more than 10 revolutions of the binary, with $sim$100-minute sampling. Analysis of the time series shows that flares or fading events take place typ
We present a detailed period analysis of the bright Cepheid-type variable star V1154 Cygni (V =9.1 mag, P~4.9 d) based on almost 600 days of continuous observations by the Kepler space telescope. The data reveal significant cycle-to-cycle fluctuation