ترغب بنشر مسار تعليمي؟ اضغط هنا

Achromatic late-time variability in thermonuclear X-ray bursts - an accretion disk disrupted by a nova-like shell?

289   0   0.0 ( 0 )
 نشر من قبل Jean in 't Zand
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.J.M. in t Zand




اسأل ChatGPT حول البحث

An unusual Eddington-limited thermonuclear X-ray burst was detected from the accreting neutron star in 2S 0918-549 with the Rossi X-ray Timing Explorer. The burst commenced with a brief (40 ms) precursor and maintained near-Eddington fluxes during the initial 77 s. These characteristics are indicative of a nova-like expulsion of a shell from the neutron star surface. Starting 122 s into the burst, the burst shows strong (87 +/- 1% peak-to-peak amplitude) achromatic fluctuations for 60 s. We speculate that the fluctuations are due to Thompson scattering by fully-ionized inhomogeneities in a resettling accretion disk that was disrupted by the effects of super-Eddington fluxes. An expanding shell may be the necessary prerequisite for the fluctuations.



قيم البحث

اقرأ أيضاً

Type-I X-ray bursts arise from unstable thermonuclear burning of accreted fuel on the surface of neutron stars. In this chapter we review the fundamental physics of the burning processes, and summarise the observational, numerical, and nuclear experi mental progress over the preceding decade. We describe the current understanding of the conditions that lead to burst ignition, and the influence of the burst fuel on the observational characteristics. We provide an overview of the processes which shape the burst X-ray spectrum, including the observationally elusive discrete spectral features. We report on the studies of timing behaviour related to nuclear burning, including burst oscillations and mHz quasi-periodic oscillations. We describe the increasing role of nuclear experimental physics in the interpretation of astrophysical data and models. We survey the simulation projects that have taken place to date, and chart the increasing dialogue between modellers, observers, and nuclear experimentalists. Finally, we identify some open problems with prospects of a resolution within the timescale of the next such review.
It has been known for nearly three decades that the energy spectra of thermonuclear X-ray bursts are often well-fit by Planck functions with temperatures so high that they imply a super-Eddington radiative flux at the emitting surface, even during po rtions of bursts when there is no evidence of photospheric radius expansion. This apparent inconsistency is usually set aside by assuming that the flux is actually sub-Eddington and that the fitted temperature is so high because the spectrum has been distorted by the energy-dependent opacity of the atmosphere. Here we show that the spectra predicted by currently available conventional atmosphere models appear incompatible with the highest-precision measurements of burst spectra made using the Rossi X-ray Timing Explorer, such as during the 4U 1820-30 superburst and a long burst from GX 17+2. In contrast, these measurements are well-fit by Bose-Einstein spectra with high temperatures and modest chemical potentials. Such spectra are very similar to Planck spectra. They imply surface radiative fluxes more than a factor of three larger than the Eddington flux. We find that segments of many other bursts from many sources are well-fit by similar Bose-Einstein spectra, suggesting that the radiative flux at the emitting surface also exceeds the Eddington flux during these segments. We suggest that burst spectra can closely approximate Bose-Einstein spectra and have fluxes that exceed the Eddington flux because they are formed by Comptonization in an extended, low-density radiating gas supported by the outward radiation force and confined by a tangled magnetic field.
Many distinct classes of high-energy variability have been observed in astrophysical sources, on a range of timescales. The widest range (spanning microseconds-decades) is found in accreting, stellar-mass compact objects, including neutron stars and black holes. Neutron stars are of particular observational interest, as they exhibit surface effects giving rise to phenomena (thermonuclear bursts and pulsations) not seen in black holes. Here we briefly review the present understanding of thermonuclear (type-I) X-ray bursts. These events are powered by an extensive chain of nuclear reactions, which are in many cases unique to these environments. Thermonuclear bursts have been exploited over the last few years as an avenue to measure the neutron star mass and radius, although the contribution of systematic errors to these measurements remains contentious. We describe recent efforts to better match burst models to observations, with a view to resolving some of the astrophysical uncertainties related to these events. These efforts have good prospects for providing complementary information to nuclear experiments.
Strong spectral softening has been revealed in the late X-ray afterglows of some gamma-ray bursts (GRBs). The scenario of X-ray scattering around circum-burst dusty medium has been supported by previous works due to its overall successful prediction of both the temporal and spectral evolution of some X-ray afterglows. To further investigate the observed feature of spectral softening, we now systematically search the X-ray afterglows detected by X-Ray Telescope (XRT) of Swift and collect twelve GRBs with significant late-time spectral softening. We find that dust scattering could be the dominant radiative mechanism for these X-ray afterglows regarding their temporal and spectral features. For some well observed bursts with high-quality data, their time-resolved spectra could be well produced within the scattering scenario by taking into account the X-ray absorption from circum-burst medium. We also find that during spectral softening the power-law index in the high energy end of the spectra does not vary much. The spectral softening is mainly manifested by the spectral peak energy continually moving to the soft end.
We study the imprint of magnetic fields B on late-time IR line profiles and light curves of Type Ia Supernovae. As a benchmark, we use the explosion of a Chandrasekhar mass M_{Ch White Dwarf (WD) and, specifically, a delayed detonation model. We assu me WDs with initial magnetic surface fields between 1 and 1E9G. We discuss large-scale dipole and small-scale magnetic fields. We find that the [Fe II] line at 1.644 mu can be used to analyze the overall chemical and density structure of the exploding WD up to day 200 without considering B. Subsequently, positron transport and magnetic field effects become important. By day 500, the profile becomes sensitive to the morphology of B and directional dependent for dipole fields. Small or no directional dependence of the spectra is found for small-scale B. After about 200 days, persistent broad-line, flat-topped or stumpy profiles require high density burning which is the signature of a WD close to M_Ch. Narrow peaked profiles are a signature of chemical mixing or sub-MCh WDs. Good time coverage is required to separate the effects of optical depth, the size and morphology of B, and the aspect angle of the observer. The spectra require a resolution of about 500 km/sec and a signal to noise ratio of about 20%. Line blending effect are demonstrated at the example of equally prominent features at about 1.5 and 1.8 mu. For some SNeIa, spectra beyond day 300 have been observed which lend support for M_Ch mass explosions in at least some cases, and require magnetic fields equal to or in excess of 1E6G. We briefly discuss the effects of the size and morphology of B on light curves and the limitations in light of the diversity of SNeIa. We argue that line profiles are a more direct measurement of B.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا