ﻻ يوجد ملخص باللغة العربية
Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of $N$ fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier--Stokes problem. Generalizing previous work by Tomotika (N=2), Stone & Brenner (N=3, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalized eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the N=3 case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to N=2 problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full 3-dimensional Stokes-flow simulations. Many $N > 3$ cases remain to be explored, and as a first step we discuss two illustrative $N to infty$ cases, an alternating-layer structure and a geometry with a continuously varying viscosity.
Recent experimental observations have demonstrated interesting instability phenomenon during thermal drawing of microstructured glass/polymer fibers, and these observations motivate us to examine surface-tension-driven instabilities in concentric cyl
Flexible rings and rectangle structures floating at the surface of water are prone to deflect under the action of surface pressure induced by the addition of surfactant molecules on the bath. While the frames of rectangles bend inward or outward for
We perform a three-dimensional, short-wavelength stability analysis on the numerically simulated two-dimensional flow past a circular cylinder for Reynolds numbers in the range $50le Rele300$; here, $Re = U_{infty}D/ u$ with $U_infty$, $D$ and $ u$ b
Recently, the Whitham and capillary-Whitham equations were shown to accurately model the evolution of surface waves on shallow water. In order to gain a deeper understanding of these equations, we compute periodic, traveling-wave solutions to both an
We revisit the somewhat classical problem of the linear stability of a rigidly rotating liquid column in this communication. Although literature pertaining to this problem dates back to 1959, the relation between inviscid and viscous stability criter