ﻻ يوجد ملخص باللغة العربية
We report on event structure and double helicity asymmetry ($A_LL$) of jet production in longitudinally polarized p+p collisions at $sqrt{s}$=200 GeV. Photons and charged particles were measured at midrapidity $|eta| < 0.35$ with the requirement of a high-momentum ($>2$ GeV/$c$) photon in each event. Measured event structure is compared with {sc pythia} and {sc geant} simulations. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet $A_{LL}$, photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster $p_T$ sum ($p_T^{rm reco}$). The effect of detector response and the underlying events on $p_T^{rm reco}$ was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the NLO pQCD jet production cross section. For $4 < p_T^{rm reco} < 12$ GeV/$c$ with an average beam polarization of $< P > = 49%$ we measured $A_{LL} = -0.0014 pm 0.0037^{rm stat}$ at the lowest $p_T^{rm reco}$ bin (4-5 GeV/$c$) and $-0.0181 pm 0.0282^{rm stat}$ at the highest $p_T^{rm reco}$ bin (10-12 GeV/$c$) with a beam polarization scale error of 9.4% and a $pT$ scale error of 10%. Jets in the measured $p_T^{rm reco}$ range arise primarily from hard-scattered gluons with momentum fraction $0.02 < x < 0.3$ according to {sc pythia}. The measured $A_{LL}$ is compared with predictions that assume various $Delta G(x)$ distributions based on the GRSV parameterization. The present result imposes the limit $-1.1 < int_{0.02}^{0.3}dx Delta G(x, mu^2 = 1 {rm GeV}^2) < 0.4$ at 95% confidence level or $int_{0.02}^{0.3}dx Delta G(x, mu^2 = 1 {rm GeV}^2) < 0.5$ at 99% confidence level.
We present preliminary results for the first measurements of the double longitudinal spin asymmetry A_LL in inclusive jet production at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data amount to ~ 0.5 pb-1 collected a
The double helicity asymmetry in neutral pion production for p_T = 1 to 12 GeV/c has been measured with the PHENIX experiment in order to access the gluon spin contribution, Delta-G, to the proton spin. Measured asymmetries are consistent with zero,
The PHENIX experiment presents results from the RHIC 2006 run with polarized proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at mid-rapidity. Unpolarized cross section results are measured for transverse momenta p_T = 0.5 to 7 G
We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at
Measurements of double-helicity asymmetries for inclusive hadron production in polarized p+p collisions are sensitive to helicity--dependent parton distribution functions, in particular to the gluon helicity distribution, Delta(g). This study focuses