ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Series Photometry of Globular Clusters: M62 (NGC 6266), the Most RR Lyrae-Rich Globular Cluster in the Galaxy?

108   0   0.0 ( 0 )
 نشر من قبل Marcio Catelan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Contreras




اسأل ChatGPT حول البحث

We present new time-series CCD photometry, in the B and V bands, for the moderately metal-rich ([Fe/H] ~ -1.3) Galactic globular cluster (GC) M62 (NGC 6266). The present dataset is the largest obtained so far for this cluster, and consists of 168 images per filter, obtained with the Warsaw 1.3m telescope at the Las Campanas Observatory (LCO) and the 1.3m telescope of the Cerro Tololo Inter-American Observatory (CTIO), in two separate runs over the time span of three months. The procedure adopted to detect the variable stars was the optimal image subtraction method (ISIS v2.2), as implemented by Alard. The photometry was performed using both ISIS and DAOPHOT/ALLFRAME. We have identified 245 variable stars in the cluster fields that have been analyzed so far, of which 179 are new discoveries. Of these variables, 133 are fundamental mode RR Lyrae stars (RRab), 76 are first overtone (RRc) pulsators, 4 are type II Cepheids, 25 are long-period variables (LPV), 1 is an eclipsing binary, and 6 are not yet well classified. Such a large number of RR Lyrae stars places M62 among the top two most RR Lyrae-rich (in the sense of total number of RR Lyrae stars present) GCs known in the Galaxy, second only to M3 (NGC 5272) with a total of 230 known RR Lyrae stars. Since this study covers most but not all of the cluster area, it is not unlikely that M62 is in fact the most RR Lyrae-rich GC in the Galaxy. In like vein, we were also able to detect the largest sample of LPVs known in a Galactic GC. We analyze a variety of Oosterhoff type indicators for the cluster, and conclude that M62 is an Oosterhoff type I system. This is in good agreement with the moderately high metallicity of the cluster, in spite of its predominantly blue horizontal branch morphology -- which is more typical of Oosterhoff type II systems. We thus conclude that metallicity plays a key role in defining Oosterhoff type. [abridged]



قيم البحث

اقرأ أيضاً

111 - G. Clementini 2005
Low resolution spectra have been used to measure individual metal abundances of RR Lyrae stars in NGC 6441, a Galactic globular cluster known to have very unusual horizontal branch morphology and periods of the RR Lyrae stars for its high metallicity . We find an average metal abundance of [Fe/H]=-0.69 +/- 0.06 (r.m.s.=0.33 dex) and [Fe/H]=-0.41 +/- 0.06 (r.m.s.=0.36 dex) on Zinn & West and Carretta & Gratton metallicity scales, respectively, consistent with the cluster metal abundance derived by Armandroff & Zinn. Most of the metallicities were extrapolated from calibration relations defined for [Fe/H] < -1; however, they are clearly high and contrast with the rather long periods of the NGC 6441 variables, thus confirming that the cluster does not fit in the general Oosterhoff classification scheme. The r.m.s. scatter of the average is larger than observational errors (0.15-0.16 dex) possibly indicating some spread in metallicity. However, even the metal poor variables, if confirmed to be cluster members, are still more metal rich than those commonly found in the Oosterhoff type II globular clusters.
NGC 362 is a bright southern globular cluster for which no extensive variability survey has ever been done. Time-series CCD photometric observations have been obtained. Light curves have been derived with both profile fitting photometry and image sub traction. We developed a simple method to convert flux phase curves to magnitudes, which allows the use of empirical light curve shape vs. physical parameters calibrations. Using the RR Lyrae metallicity and luminosity calibrations, we have determined the relative iron abundances and absolute magnitudes of the stars. The color-magnitude diagram has been fitted with Yale-Yonsei isochrones to determine reddening and distance independently. For five RR Lyrae stars we obtained radial velocity measurements from optical spectra. We found 45 RR Lyr stars, of which the majority are new discoveries. About half of the RR Lyraes exhibit light curve changes (Blazhko effect). The RR Lyrae-based metallicity of the cluster is [Fe/H]=-1.16 +/- 0.25, the mean absolute magnitude of the RR Lyrae stars is M_V=0.82 +/- 0.04 mag implying a distance of 7.9 +/- 0.6 kpc. The mean period of RRab stars is 0.585 +/- 0.081 days. These properties place NGC 362 among the Oosterhoff type I globular clusters. The isochrone fit implies a slightly larger distance of 9.2 +/- 0.5 kpc and an age of 11 +/- 1 Gyr. We also found 11 eclipsing binaries, 14 pulsating stars of other types, including classical Cepheids in the SMC and 15 variable stars with no firm classification.
134 - P.B. Stetson 2014
We present optical and near-infrared UBVRIJHK photometry of stars in the Galactic globular cluster M4 (NGC 6121) based upon a large corpus of observations obtained mainly from public astronomical archives. We concentrate on the RR Lyrae variable star s in the cluster, and make a particular effort to accurately reidentify the previously discovered variables. We have also discovered two new probable RR Lyrae variables in the M4 field: one of them by its position on the sky and its photometric properties is a probable member of the cluster, and the second is a probable background (bulge?) object. We provide accurate equatorial coordinates for all 47 stars identified as RR Lyraes, new photometric measurements for 46 of them, and new period estimates for 45. We have also derived accurate positions and mean photometry for 34 more stars previously identified as variable stars of other types, and for an additional five non-RR Lyrae variable stars identified for the first time here. We present optical and near-infrared color-magnitude diagrams for the cluster and show the locations of the variable stars in them. We present the Bailey (period-amplitude) diagrams and the period-frequency histogram for the RR Lyrae stars in M4 and compare them to the corresponding diagrams for M5 (NGC 5904). We conclude that the RR Lyrae populations in the two clusters are quite similar in all the relevant properties that we have considered. The mean periods, pulsation-mode ratios, and Bailey diagrams of these two clusters show support for the recently proposed Oosterhoff-neutral classification.
Recently, Kundu et al (2019) reported that the globular cluster NGC 5024 (M53) possesses five extra-tidal RR Lyrae. In fact, four of them were instead known members of a nearby globular cluster NGC 5053. The status of the remaining extra-tidal RR Lyr ae is controversial depending on the adopted tidal radius of NGC 5024. We have also searched for additional extra-tidal RR Lyrae within an area of $sim8$~deg$^2$ covering both globular clusters. This includes other known RR Lyrae within the search area, as well as stars that fall within the expected range of magnitudes and colors for RR Lyrae (and yet outside the cutoff of 2/3 of the tidal radii of each globular clusters for something to be called extra-tidal) if they were extra-tidal RR Lyrae candidates for NGC 5024 or NGC 5053. Based on the the proper motion information and their locations on the color-magnitude diagram, none of the known RR Lyrae belong to the extra-tidal RR Lyrae of either globular clusters. In the cases where the stars satisfied the magnitude and color ranges of RR Lyrae, analysis of time series data taken from the Zwicky Transient Facility do not reveal periodicities, suggesting that none of these stars are RR Lyrae. We conclude that there are no extra-tidal RR Lyrae associated with either NGC 5024 or NGC 5053 located within our search area.
[ABRIDGED] $omega$ Centauri (NGC 5139) contains large numbers of variable stars of different types and, in particular, more than a hundred RR Lyrae stars. We have conducted a variability survey of $omega$ Cen in the NIR, using ESOs 4.1m Visible and I nfrared Survey Telescope for Astronomy (VISTA). This is the first paper of a series describing our results. $omega$ Cen was observed using VIRCAM mounted on VISTA. A total of 42 and 100 epochs in $J$ and $K_{rm S}$, respectively, were obtained, distributed over a total timespan of 352 days. PSF photometry was performed, and periods of the known variable stars were improved when necessary using an ANOVA analysis. An unprecedented homogeneous and complete NIR catalogue of RR Lyrae stars in the field of $omega$ Cen was collected, allowing us to study, for the first time, all the RR Lyrae stars associated to the cluster, except 4 located far away from the cluster center. Membership status, subclassifications between RRab and RRc subtypes, periods, amplitudes, and mean magnitudes were derived for all the stars in our sample. Additionally, 4 new RR Lyrae stars were discovered, 2 of them with high probability of being cluster members. The distribution of $omega$ Cen stars in the Bailey (period-amplitude) diagram is also discussed. Reference lines in this plane, for both Oosterhoff type I (OoI) and II (OoII) components, are provided. In the present paper, we clarify the status of many (candidate) RR Lyrae stars that had been unclear in previous studies. This includes stars with anomalous positions in the color-magnitude diagram, uncertain periods or/and variability types, and possible field interlopers. We conclude that $omega$ Cen hosts a total of 88 RRab and 101 RRc stars, for a grand total of 189 likely members. We confirm that most RRab stars in the cluster belong to an OoII component, as previously found using visual data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا