ترغب بنشر مسار تعليمي؟ اضغط هنا

Single Crystal Growth and Characterization of the Iron-Based Superconductor KFe2As2 Synthesized by KAs Flux Method

103   0   0.0 ( 0 )
 نشر من قبل Kunihiro Kihou
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Centimeter sized platelet single crystals of KFe2As2 were grown using a self-flux method. An encapsulation technique using commercial stainless steel container allowed the stable crystal growth lasting for more than 2 weeks. Ternary K-Fe-As systems with various starting compositions were examined to determine the optimal growth conditions. Employment of KAs flux led to the growth of large single crystals with the typical size of as large as 15 mm x 10 mm x 0.4 mm. The grown crystals exhibit sharp superconducting transition at 3.4 K with the transition width 0.2 K, as well as the very large residual resistivity ratio exceeding 450, evidencing the good sample quality.



قيم البحث

اقرأ أيضاً

The pairing mechanism in iron-based superconductors is the subject of ongoing debate. Proximity to an antiferromagnetic phase suggests that pairing is mediated by spin fluctuations, but orbital fluctuations have also been invoked. The former typicall y favour a pairing state of extended s-wave symmetry with a gap that changes sign between electron and hole Fermi surfaces (s+-), while the latter yield a standard s-wave state without sign change (s++). Here we show that applying pressure to KFe2As2 induces a change of pairing state. The critical temperature Tc decreases with pressure initially, and then suddenly increases, above a critical pressure Pc. The constancy of the Hall coefficient through Pc rules out a change in the Fermi surface. There is compelling evidence that the pairing state below Pc is d-wave, from bulk measurements at ambient pressure. Above Pc, the high sensitivity to disorder argues for a particular kind of s+- state. The change from d-wave to s-wave is likely to proceed via an unusual s + id state that breaks time-reversal symmetry. The proximity of two distinct pairing states found here experimentally is natural given the near degeneracy of d-wave and s+- states found theoretically. These findings make a compelling case for spin-fluctuation-mediated superconductivity in this key iron-arsenide material.
229 - T. Sato , K. Nakayama , Y. Sekiba 2008
We have performed high-resolution angle-resolved photoemission spectroscopy on heavily overdoped KFe_2As_2 (transition temperature (Tc = 3 K). We observed several renormalized bands near the Fermi level with a renormalization factor of 2-4. While the Fermi surface (FS) around the Brillouin-zone center is qualitatively similar to that of optimally-doped Ba_{1-x}K_xFe_2As_2 (x = 0.4; Tc = 37 K), the FS topology around the zone corner (M point) is markedly different: the two electron FS pockets are completely absent due to excess of hole doping. This result indicates that the electronic states around the M point play an important role in the high-Tc superconductivity of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ and suggests that the interband scattering via the antiferromagnetic wave vector essentially controls the Tc value in the overdoped region.
The single crystal growth and superconducting properties of PbTaSe2 with non-centrosymmetric crystal structure is reported. Using the chemical vapor transport (CVT) technique, PbTaSe2 crystallizes in a layered structure and the crystal symmetry has b een shown belonging to a non-centrosymmetric space group P6-m2 confirmed by the consistent band picture near the Fermi level between the angle-resolved photoemission spectrum (ARPES) and theoretical calculations. Superconductivity with Tc =3.83 K has been characterized fully with electrical resistivity r{ho}(T), magnetic susceptibility c{hi}(T), and specific heat C(T) measurements using single crystal samples. The superconducting anisotropy, electron-phonon coupling {lambda}ep, superconducting energy gap {Delta}0, and the specific heat jump {Delta}C/{lambda}Tc at Tc confirms that PbTaSe2 can be categorized as a weakly coupled type-II superconductor.
We report an easy single step synthesis route of title compound NdFeAsO0.80F0.20 superconductor having bulk superconductivity below 50 K. The title compound is synthesized via solid-state reaction route by encapsulation in an evacuated (10-3 Torr) qu artz tube. Rietveld analysis of powder X-ray diffraction data shows that compound crystallized in tetragonal structure with space group P4/nmm. R(T)H measurements showed superconductivity with Tc (R=0) at 48 K and a very high upper critical field (Hc2) of up to 345 Tesla. Magnetic measurements exhibited bulk superconductivity in terms of diamagnetic onset below 50 K. The lower critical field (Hc1) is around 1000 Oe at 5 K. In normal state i.e., above 60 K, the compound exhibited purely paramagnetic behavior and thus ruling out the presence of any ordered FeOx impurity in the matrix. In specific heat measurements a jump is observed in the vicinity of superconducting transition (Tc) along with an upturn at below T=4 K due to the AFM ordering of Nd+3 ions in the system. The Thermo-electric power (TEP) is negative down to Tc, thus indicating dominant carriers to be of n-type in NdFeAsO0.80F0.20 superconductor. The granularity of the bulk superconducting NdFeAsO0.8F0.2 sample is investigated and the intra and inter grain contributions have been individuated by looking at various amplitude and frequencies of the applied AC drive magnetic field.
236 - Teng Wang , Jianan Chu , Hua Jin 2019
Millimeter sized single crystals of KCa_2Fe_4As_4F_2 were grown using a self-flux method. The chemical compositions and crystal structure were characterized carefully. Superconductivity with the critical transition T_c = 33.5 K was confirmed by both the resistivity and magnetic susceptibility measurements. Moreover, the upper critical field H_c2 was studied by the resistivity measurements under different magnetic fields. A rather steep increase for the in-plane H_c2^ab with cooling, dmu_0H_c2^a/dT|T_c = -50.9 T/K, was observed, indicating an extremely high upper critical field. Possible origins for this behavior were discussed. The findings in our work is a great promotion both for understanding the physical properties and applications of 12442-type Fe-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا