ترغب بنشر مسار تعليمي؟ اضغط هنا

A Light impurity in an Equilibrium Gas

86   0   0.0 ( 0 )
 نشر من قبل Luca D'Alessio
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the evolution of a light impurity particle in a Lorentz gas where the background atoms are in thermal equilibrium. As in the standard Lorentz gas, we assume that the particle is negligibly light in comparison with the background atoms. The thermal motion of atoms causes the average particle speed to grow. In the case of the hard-sphere particle-atom interaction, the temporal growth is ballistic, while generally it is sub-linear. For the particle-atom potential that diverges as r^{-lambda} in the small separation limit, the average particle speed grows as t^{lambda /(2(d-1)+ lambda)} in d dimensions. The particle displacement exhibits a universal growth, linear in time and the average (thermal) speed of the atoms. Surprisingly, the asymptotic growth is independent on the gas density and the particle-atom interaction. The velocity and position distributions approach universal scaling forms which are non-Gaussian. We determine the velocity distribution in arbitrary dimension and for arbitrary interaction exponent lambda. For the hard-sphere particle-atom interaction, we compute the position distribution and the joint velocity-position distribution.



قيم البحث

اقرأ أيضاً

77 - Milan Krbalek 2006
We derive the exact formula for thermal-equilibrium spacing distribution of one-dimensional particle gas with repulsive potential V(r)=r^(-a) (a>0) depending on the distance r between the neighboring particles. The calculated distribution (for a=1) i s successfully compared with the highway-traffic clearance distributions, which provides a detailed view of changes in microscopical structure of traffic sample depending on traffic density. In addition to that, the observed correspondence is a strong support of studies applying the equilibrium statistical physics to traffic modelling.
We provide systematic analysis on a non-Hermitian PT -symmetric quantum impurity system both in and out of equilibrium, based on exact computations. In order to understand the interplay between non-Hermiticity and Kondo physics, we focus on a prototy pical noninteracting impurity system, the resonant level model, with complex coupling constants. Explicitly constructing biorthogonal basis, we study its thermodynamic properties as well as the Loschmidt echo starting from the initially disconnected two free fermion chains. Remarkably, we observe the universal crossover physics in the Loschmidt echo, both in the PT broken and unbroken regimes. We also find that the ground state quantities we compute in the PT broken regime can be obtained by analytic continuation. It turns out that Kondo screening ceases to exist in the PT broken regime, which was also previously predicted in the non-hermitian Kondo model. All the analytical results are corroborated against biorthogonal free fermion numerics.
244 - T.G. Philbin , J. Anders 2014
One particle in a classical perfect gas is driven out of equilibrium by changing its mass over a short time interval. The work done on the driven particle depends on its collisions with the other particles in the gas. This model thus provides an exam ple of a non-equilibrium process in a system (the driven particle) coupled to an environment (the rest of the gas). We calculate the work done on the driven particle and compare the results to Jarzynskis equality relating a non-equilibrium work process to an equilibrium free-energy difference. The results for this model are generalised to the case of a system that is driven in one degree of freedom while interacting with the environment through other degrees of freedom.
153 - Zhihao Lan , Carlos Lobo 2015
We study excitonic states of an atomic impurity in a Fermi gas, i.e., bound states consisting of the impurity and a hole. Previous studies considered bound states of the impurity with particles from the Fermi sea where the holes only formed part of t he particle-hole dressing. Within a two-channel model, we find that, for a wide range of parameters, excitonic states are not ground but metastable states. We further calculate the decay rates of the excitonic states to polaronic and dimeronic states and find they are long lived, scaling as $Gamma^{rm{Exc}}_ {rm{Pol}} propto ( Deltaomega)^{5.5}$ and $Gamma^{rm{Exc}}_ {rm{Dim}} propto (Deltaomega)^{4}$. We also find that a new continuum of exciton-particle states should be considered alongside the previously known dimeron-hole continuum in spectroscopic measurements. Excitons must therefore be considered as a new ingredient in the study of metastable physics currently being explored experimentally.
We propose a method to prepare a sample of fermionic atoms in a three-dimensional (3D) optical lattice at unprecedentedly low temperatures and uniform filling factors. The process involves adiabatic loading of atoms into multiple energy bands of an o ptical lattice followed by a filtering stage whereby atoms from all but the ground band are removed. Of critical importance is the use of a non-harmonic trapping potential, taken here to be the radial profile of a high-order Laguerre-Gaussian laser beam, to provide external confinement for the atoms. For realistic experimental parameters, this procedure should produce samples with temperatures $sim10^{-3}$ of the Fermi temperature. This would allow the investigation of the low-temperature phase diagram of the Fermi-Hubbard model as well as the initialization of a high-fidelity quantum register.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا