ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermis golden rule applied to the gamma decay in the quasicontinuum of 46Ti

127   0   0.0 ( 0 )
 نشر من قبل Magne Guttormsen
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Particle-gamma coincidences from the 46Ti(p,p gamma)46Ti inelastic scattering reaction with 15-MeV protons are utilized to obtain gamma-ray spectra as a function of excitation energy. The rich data set allows analyzing the coincidence data with various gates on excitation energy. This enables, for many independent data sets, a simultaneous extraction of level density and radiative strength function (RSF). The results are consistent with one common level density. The data seem to exhibit a universal RSF as the deduced RSFs from different excitation energies show only small fluctuations provided that only excitation energies above 3 MeV are taken into account. If transitions to well-separated low-energy levels are included, the deduced RSF may change by a factor of 2-3, which might be expected due to the involved Porter-Thomas fluctuations.



قيم البحث

اقرأ أيضاً

129 - C. Dullemond 2002
A study is made of the behavior of unstable states in simple models which nevertheless are realistic representations of situations occurring in nature. It is demonstrated that a non-exponential decay pattern will ultimately dominate decay due to a lo wer limit to the energy. The survival rate approaches zero faster than the inverse square of the time when the time goes to infinity.
Fermis golden rule underpins the investigation of mobile carriers propagating through various solids, being a standard tool to calculate their scattering rates. As such, it provides a perturbative estimate under the implicit assumption that the effec t of the interaction Hamiltonian which causes the scattering events is sufficiently small. To check the validity of this assumption, we present a general framework to derive simple validity criteria in order to assess whether the scattering rates can be trusted for the system under consideration, given its statistical properties such as average size, electron density, impurity density et cetera. We derive concrete validity criteria for metallic nanowires with conduction electrons populating a single parabolic band subjected to different elastic scattering mechanisms: impurities, grain boundaries and surface roughness.
148 - E. Langmann , G. Lindblad 2008
We discuss the decay of unstable states into a quasicontinuum using models of the effective Hamiltonian type. The goal is to show that exponential decay and the golden rule are exact in a suitable scaling limit, and that there is an associated renorm alization group (RG) with these properties as a fixed point. The method is inspired by a limit theorem for infinitely divisible distributions in probability theory, where there is a RG with a Cauchy distribution, i.e. a Lorentz line shape, as a fixed point. Our method of solving for the spectrum is well known; it does not involve a perturbation expansion in the interaction, and needs no assumption of a weak interaction. We use random matrices for the interaction, and show that the ensemble fluctuations vanish in the scaling limit. Thus the limit is the same for every model in the ensemble with probability one.
Fermis golden rule defines the transition rate between weakly coupled states and can thus be used to describe a multitude of molecular processes including electron-transfer reactions and light-matter interaction. However, it can only be calculated if the wave functions of all internal states are known, which is typically not the case in molecular systems. Marcus theory provides a closed-form expression for the rate constant, which is a classical limit of the golden rule, and indicates the existence of a normal regime and an inverted regime. Semiclassical instanton theory presents a more accurate approximation to the golden-rule rate including nuclear quantum effects such as tunnelling, which has so far been applicable to complex anharmonic systems in the normal regime only. In this paper we extend the instanton method to the inverted regime and study the properties of the periodic orbit, which describes the tunnelling mechanism via two imaginary-time trajectories, one of which now travels in negative imaginary time. It is known that tunnelling is particularly prevalent in the inverted regime, even at room temperature, and thus this method is expected to be useful in studying a wide range of molecular transitions occurring in this regime.
We study heating dynamics in isolated quantum many-body systems driven periodically at high frequency and large amplitude. Combining the high-frequency expansion for the Floquet Hamiltonian with Fermis golden rule (FGR), we develop a master equation termed the Floquet FGR. Unlike the conventional one, the Floquet FGR correctly describes heating dynamics, including the prethermalization regime, even for strong drives, under which the Floquet Hamiltonian is significantly dressed, and nontrivial Floquet engineering is present. The Floquet FGR depends on system size only weakly, enabling us to analyze the thermodynamic limit with small-system calculations. Our results also indicate that, during heating, the system approximately stays in the thermal state for the Floquet Hamiltonian with a gradually rising temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا