ترغب بنشر مسار تعليمي؟ اضغط هنا

CARMA Survey Toward Infrared-bright Nearby Galaxies (STING): Molecular Gas Star Formation Law in NGC4254

570   0   0.0 ( 0 )
 نشر من قبل Nurur Rahman
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This study explores the effects of different assumptions and systematics on the determination of the local, spatially resolved star formation law. Using four star formation rate (SFR) tracers (Halpha with azimuthally averaged extinction correction, mid-infrared 24 micron, combined Halpha and mid-infrared 24 micron, and combined far-ultraviolet and mid-infrared 24 micron), several fitting procedures, and different sampling strategies we probe the relation between SFR and molecular gas at various spatial resolutions and surface densities within the central 6.5 kpc in the disk of NGC4254. We find that in the high surface brightness regions of NGC4254 the form of the molecular gas star formation law is robustly determined and approximately linear and independent of the assumed fraction of diffuse emission and the SFR tracer employed. When the low surface brightness regions are included, the slope of the star formation law depends primarily on the assumed fraction of diffuse emission. In such case, results range from linear when the fraction of diffuse emission in the SFR tracer is ~30% or less (or when diffuse emission is removed in both the star formation and the molecular gas tracer), to super-linear when the diffuse fraction is ~50% and above. We find that the tightness of the correlation between gas and star formation varies with the choice of star formation tracer. The 24 micron SFR tracer by itself shows the tightest correlation with the molecular gas surface density, whereas the Halpha corrected for extinction using an azimuthally-averaged correction shows the highest dispersion. We find that for R<0.5R_25 the local star formation efficiency is constant and similar to that observed in other large spirals, with a molecular gas depletion time ~2 Gyr.



قيم البحث

اقرأ أيضاً

68 - Yixian Cao , Tony Wong , Rui Xue 2017
We present a $^{13}mathrm{CO} (J = 1 rightarrow 0)$ mapping survey of 12 nearby galaxies from the CARMA STING sample. The line intensity ratio $mathcal{R} equiv I[^{12}mathrm{CO} (J = 1 rightarrow 0)]/I[^{13}mathrm{CO} (J = 1 rightarrow 0)]$ is deriv ed to study the variations in molecular gas properties. For 11 galaxies where it can be measured with high significance, the spatially resolved $mathcal{R}$ on (sub-)kiloparsec scales varies by up to a factor of 3--5 within a galaxy. Lower $mathcal{R}$ values are usually found in regions with weaker $^{12}rm CO$. We attribute this apparent trend to a bias against measuring large $mathcal{R}$ values when $^{12}rm CO$ is weak. Limiting our analysis to the $^{12}rm CO$ bright regions that are less biased, we do not find $mathcal{R}$ on (sub)kpc scales correlate with galactocentric distance, velocity dispersion or the star formation rate. The lack of correlation between SFR and $mathcal{R}$ indicates that the CO optical depth is not sensitive to stellar energy input, or that any such sensitivity is easily masked by other factors. Extending the analysis to all regions with $rm ^{12}CO$ emission by spectral stacking, we find that 5 out of 11 galaxies show higher stacked $mathcal{R}$ for galactocentric radii of $gtrsim 1$ kpc and $Sigma_{mathrm{SFR}} lesssim 0.1 rm M_{sun} yr^{-1} kpc^{-2}$, which could result from a greater contribution from diffuse gas. Moreover, significant galaxy-to-galaxy variations are found in $mathcal{R}$, but the global $mathcal{R}$ does not strongly depend on dust temperature, inclination, or metallicity of the galaxy.
83 - Tony Wong 2013
We investigate the correlation between CO and HI emission in 18 nearby galaxies from the CARMA Survey Toward IR-Bright Nearby Galaxies (STING) at sub-kpc and kpc scales. Our sample, spanning a wide range in stellar mass and metallicity, reveals evide nce for a metallicity dependence of the HI column density measured in regions exhibiting CO emission. Such a dependence is predicted by the equilibrium model of McKee & Krumholz, which balances H_2 formation and dissociation. The observed HI column density is often smaller than predicted by the model, an effect we attribute to unresolved clumping, although values close to the model prediction are also seen. We do not observe HI column densities much larger than predicted, as might be expected were there a diffuse HI component that did not contribute to H_2 shielding. We also find that the H_2 column density inferred from CO correlates strongly with the stellar surface density, suggesting that the local supply of molecular gas is tightly regulated by the stellar disk.
We use the IRAM HERACLES survey to study CO emission from 33 nearby spiral galaxies down to very low intensities. Using atomic hydrogen (HI) data, mostly from THINGS, we predict the local mean CO velocity from the mean HI velocity. By renormalizing t he CO velocity axis so that zero corresponds to the local mean HI velocity we are able to stack spectra coherently over large regions as function of radius. This enables us to measure CO intensities with high significance as low as Ico = 0.3 K km/s (H2_SD = 1 Msun/pc2), an improvement of about one order of magnitude over previous studies. We detect CO out to radii Rgal = R25 and find the CO radial profile to follow a uniform exponential decline with scale length of 0.2 R25. Comparing our sensitive CO profiles to matched profiles of HI, Halpha, FUV, and IR emission at 24um and 70um, we observe a tight, roughly linear relation between CO and IR intensity that does not show any notable break between regions that are dominated by molecular (H2) gas (H2_SD > HI_SD) and those dominated by atomic gas (H2_SD < HI_SD). We use combinations of FUV+24um and Halpha+24um to estimate the recent star formation rate (SFR) surface density, SFR_SD, and find approximately linear relations between SFR_SD and H2_SD. We interpret this as evidence for stars forming in molecular gas with little dependence on the local total gas surface density. While galaxies display small internal variations in the SFR-to-H2 ratio, we do observe systematic galaxy-to-galaxy variations. These galaxy-to-galaxy variations dominate the scatter in relations between CO and SFR tracers measured at large scales. The variations have the sense that less massive galaxies exhibit larger ratios of SFR-to-CO than massive galaxies. Unlike the SFR-to-CO ratio, the balance between HI and H2 depends strongly on the total gas surface density and radius. It must also depend on additional parameters.
An imaging survey of CO(1-0), HCN(1-0), and HCO$^+$(1-0) lines in the centers of nearby Seyfert galaxies has been conducted using the Nobeyama Millimeter Array and the RAINBOW interferometer. Preliminary results reveal that 3 Seyferts out of 7 show a bnormally high HCN/CO and HCN/HCO$^+$ ratios, which cannot occur even in nuclear starburst galaxies. We suggest that the enhanced HCN emission originated from X-ray irradiated dense obscuring tori, and that these molecular line ratios can be a new diagnostic tool to search for ``pure AGNs. According to our HCN diagram, we suggest that NGC 1068, NGC 1097, and NGC 5194 host ``pure AGNs, whereas Seyfert nuclei of NGC 3079, NGC 6764, and NGC 7469 may be ``composite in nature.
182 - F. Bigiel , A. Leroy , F. Walter 2010
High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of HI, H2 and star formation rate (Sigma_HI, Sigma_H2, Sigma_SFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. Sigma_H2, traced by CO intensity, shows a strong correlation with Sigma_SFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2Gyr in large spiral galaxies. Within the star-forming disks of galaxies, Sigma_SFR shows almost no correlation with Sigma_HI. In the outer parts of galaxies, however, Sigma_SFR does scale with Sigma_HI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Sigma_gas - Sigma_SFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Sigma_gas - Sigma_SFR space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا