Hopf Solitons in the AFZ Model


الملخص بالإنكليزية

The Aratyn-Ferreira-Zimerman (AFZ) model is a conformal field theory in three-dimensional space. It has solutions that are topological solitons classified by an integer-valued Hopf index. There exist infinitely many axial solutions which have been found analytically. Axial, knot and linked solitons are found numerically to be static solutions using a modified volume preserving flow for Hopf index one to eight, allowing for comparison with other Hopf soliton models. Solutions include a static trefoil knot at Hopf index five. A one-parameter family of conformal Skyrme-Faddeev (CSF) models, consisting of linear combinations of the Nicole and AFZ models, are also investigated numerically. The transition of solutions for Hopf index four is mapped across these models. A topological change between linked and axial solutions occurs, with fewer models permitting axial solitons than linked solitons at Hopf index four.

تحميل البحث