ﻻ يوجد ملخص باللغة العربية
Ab initio calculations indicate that topological-defect networks in graphene display the full variety of single-particle electronic structures, including Dirac-fermion null-gap semiconductors, as well as metallic and semiconducting systems of very low formation energies with respect to a pristine graphene sheet. Corrugation induced by the topological defects further reduces the energy and tends to reduce the density of states at the Fermi level, to widen the gaps, or even to lead to gap opening in some cases where the parent planar geometry is metallic.
We have measured a strong increase of the low-temperature resistivity $rho_{xx}$ and a zero-value plateau in the Hall conductivity $sigma_{xy}$ at the charge neutrality point in graphene subjected to high magnetic fields up to 30 T. We explain our re
Two-dimensional topological insulators (TIs) host gapless helical edge states that are predicted to support a quantized two-terminal conductance. Quantization is protected by time-reversal symmetry, which forbids elastic backscattering. Paradoxically
The phase diagram of isotropically expanded graphene cannot be correctly predicted by ignoring either electron correlations, or mobile carbons, or the effect of applied stress, as was done so far. We calculate the ground state enthalpy (not just ener
For graphene to be used in semiconductor applications, a wide energy gap of at least 0.5 eV at the Dirac energy must be opened without the introduction of atomic defects. However, such a wide energy gap has not been realized in graphene, except in th
Graphene has shown great application potentials as the host material for next generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is its lacking of