ﻻ يوجد ملخص باللغة العربية
Given a grading $Gamma: A=oplus_{gin G}A_g$ on a nonassociative algebra $A$ by an abelian group $G$, we have two subgroups of the group of automorphisms of $A$: the automorphisms that stabilize each homogeneous component $A_g$ (as a subspace) and the automorphisms that permute the components. By the Weyl group of $Gamma$ we mean the quotient of the latter subgroup by the former. In the case of a Cartan decomposition of a semisimple complex Lie algebra, this is the automorphism group of the root system, i.e., the so-called extended Weyl group. A grading is called fine if it cannot be refined. We compute the Weyl groups of all fine gradings on matrix algebras, octonions and the Albert algebra over an algebraically closed field (of characteristic different from 2 in the case of the Albert algebra).
Known classification results allow us to find the number of (equivalence classes of) fine gradings on matrix algebras and on classical simple Lie algebras over an algebraically closed field $mathbb{F}$ (assuming $mathrm{char} mathbb{F} e 2$ in the Li
In this paper we define the so-called twisted Heisenberg superalgebras over the complex number field by adding derivations to Heisenberg superalgebras. We classify the fine gradings up to equivalence on twisted Heisenberg superalgebras and determine the Weyl groups of those gradings.
We prove simplicity, and compute $delta$-derivations and symmetric associative forms of algebras in the title.
We show that there exists a constant K such that for any PI- algebra W and any nondegenerate G-grading on W where G is any group (possibly infinite), there exists an abelian subgroup U of G with $[G : U] leq exp(W)^K$. A G-grading $W = bigoplus_{g in
We classify, up to isomorphism, gradings by abelian groups on nilpotent filiform Lie algebras of nonzero rank. In case of rank 0, we describe conditions to obtain non trivial $Z_k$-gradings.