ﻻ يوجد ملخص باللغة العربية
All gradings by abelian groups are classified on the following algebras over an algebraically closed field of characteristic not 2: the simple Lie algebra of type $G_2$ (characteristic not 3), the exceptional simple Jordan algebra, and the simple Lie algebra of type $F_4$.
We classify, up to isomorphism, gradings by abelian groups on nilpotent filiform Lie algebras of nonzero rank. In case of rank 0, we describe conditions to obtain non trivial $Z_k$-gradings.
We classify, up to isomorphism, all gradings by an arbitrary abelian group on simple finitary Lie algebras of linear transformations (special linear, orthogonal and symplectic) on infinite-dimensional vector spaces over an algebraically closed field of characteristic different from 2.
Known classification results allow us to find the number of (equivalence classes of) fine gradings on matrix algebras and on classical simple Lie algebras over an algebraically closed field $mathbb{F}$ (assuming $mathrm{char} mathbb{F} e 2$ in the Li
For a given abelian group G, we classify the isomorphism classes of G-gradings on the simple restricted Lie algebras of types W(m;1) and S(m;1) (m>=2), in terms of numerical and group-theoretical invariants. Our main tool is automorphism group scheme
For any abelian group $G$, we classify up to isomorphism all $G$-gradings on the classical central simple Lie algebras, except those of type $D_4$, over the field of real numbers (or any real closed field).