ترغب بنشر مسار تعليمي؟ اضغط هنا

The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory

138   0   0.0 ( 0 )
 نشر من قبل Valentin Martinez Pillet
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne telesocope in June 2009 for almost six days over the Arctic Circle. As a polarimeter IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mAA. IMaX uses the high Zeeman sensitive line of Fe I at 5250.2 AA and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15-0.18 arcsec range over a 50x50 arcsec FOV. Time cadences vary between ten and 33 seconds, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are four Gauss for longitudinal fields and 80 Gauss for transverse fields per wavelength sample. The LOS velocities are estimated with statistical errors of the order of 5-40 m/s. The design, calibration and integration phases of the instrument, together with the implemented data reduction scheme are described in some detail.



قيم البحث

اقرأ أيضاً

The design of modern instruments does not only imply thorough studies of instrumental effects but also a good understanding of the scientific analysis planned for the data. We investigate the reliability of Milne-Eddington (ME)
CREAM (Cosmic Ray Energetics And Mass) is a multi-flight balloon mission designed to collect direct data on the elemental composition and individual energy spectra of cosmic rays. Two instrument suites have been built to be flown alternately on a yea rly base. The tungsten/Sci-Fi imaging calorimeter for the second flight, scheduled for December 2005, was calibrated with electron and proton beams at CERN. A calibration procedure based on the study of the longitudinal shower profile is described and preliminary results of the beam test are presented.
The BLAST Observatory is a proposed superpressure balloon-borne polarimeter designed for a future ultra-long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent superpressure weight env elope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a 300L $^4$He cryogenic receiver which will cool 8,274 microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an adiabatic demagnetization refrigerator (ADR) in combination with a $^3$He sorption refrigerator all backed by a liquid helium pumped pot operating at 2K. The detector readout utilizes a new Xilinx RFSOC-based system which will run the next-generation of the BLAST-TNG KIDPy software. With this instrument we aim to answer outstanding questions about dust dynamics as well as provide community access to the polarized submillimeter sky made possible by high-altitude observing unrestricted by atmospheric transmission. The BLAST Observatory is designed for a minimum 31-day flight of which 70$%$ will be dedicated to observations for BLAST scientific goals and the remaining 30$%$ will be open to proposals from the wider astronomical community through a shared-risk proposals program.
Our aim is to model the 3D magnetic field structure of the upper solar atmosphere, including regions of non-negligible plasma beta. We use high-resolution photospheric magnetic field measurements from SUNRISE/IMaX as boundary condition for a magneto- static magnetic field model. The high resolution of IMaX allows us to resolve the interface region between photosphere and corona, but modelling this region is challenging for the following reasons. While the coronal magnetic field is thought to be force-free (the Lorentz-force vanishes), this is not the case in the mixed plasma $beta$ environment in the photosphere and lower chromosphere. In our model, pressure gradients and gravity forces are taken self-consistently into account and compensate the non-vanishing Lorentz-force. Above a certain height (about 2 Mm) the non-magnetic forces become very weak and consequently the magnetic field becomes almost force-free. Here we apply a linear approach, where the electric current density consists of a superposition of a field-line parallel current and a current perpendicular to the Suns gravity field. We illustrate the prospects and limitations of this approach and give an outlook for an extension towards a non-linear model.
EBEX was a long-duration balloon-borne experiment to measure the polarization of the cosmic microwave background. The experiment had three frequency bands centered at 150, 250, and 410 GHz and was the first to use a kilo-pixel array of transition edg e sensor (TES) bolometers aboard a balloon platform; shortly after reaching float we operated 504, 342, and 109 TESs at each of the bands, respectively. We describe the design and characterization of the array and the readout system. We give the distributions of measured thermal conductances, normal resistances, and transition temperatures. With the exception of the thermal conductance at 150 GHz. We measured median low-loop-gain time constants $tau_{0}=$ 88, 46, and 57 ms and compare them to predictions. Two measurements of bolometer absorption efficiency show high ($sim$0.9) efficiency at 150 GHz and medium ($sim$0.35, and $sim$0.25) at the two higher bands, respectively. We measure a median total optical load of 3.6, 5.3 and 5.0 pW absorbed at the three bands, respectively. EBEX pioneered the use of the digital version of the frequency domain multiplexing (FDM) system which multiplexed the bias and readout of 16 bolometers onto two wires. We present accounting of the measured noise equivalent power. The median per-detector noise equivalent temperatures referred to a black body with a temperature of 2.725 K are 400, 920, and 14500 $mu$K$sqrt{s}$ for the three bands, respectively. We compare these values to our pre-flight predictions and to a previous balloon payload, discuss the sources of excess noise, and the path for a future payload to make full use of the balloon environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا