ﻻ يوجد ملخص باللغة العربية
We study the dust properties of galaxies in the redshift range 0.1<z<2.8 observed by the Herschel Space Observatory in the field of the Great Observatories Origins Deep Survey-North as part of PEP and HerMES key programmes. Infrared (IR) luminosity (L_IR) and dust temperature (T_dust) of galaxies are derived from the spectral energy distribution (SED) fit of the far-infrared (FIR) flux densities obtained with PACS and SPIRE instruments onboard Herschel. As a reference sample, we also obtain IR luminosities and dust temperatures of local galaxies at z<0.1 using AKARI and IRAS data in the field of the Sloan Digital Sky Survey. We compare the L_IR-T_dust relation between the two samples and find that: the median T_dust of Herschel-selected galaxies at z>0.5 with L_IR>5x10^{10} L_odot, appears to be 2-5 K colder than that of AKARI-selected local galaxies with similar luminosities; and the dispersion in T_dust for high-z galaxies increases with L_IR due to the existence of cold galaxies that are not seen among local galaxies. We show that this large dispersion of the L_IR-T_dust relation can bridge the gap between local star-forming galaxies and high-z submillimeter galaxies (SMGs). We also find that three SMGs with very low T_dust (<20 K) covered in this study have close neighbouring sources with similar 24-mum brightness, which could lead to an overestimation of FIR/(sub)millimeter fluxes of the SMGs.
Because of their relatively simple morphology, bubble HII regions have been instrumental to our understanding of star formation triggered by HII regions. With the far-infrared (FIR) spectral coverage of the Herschel satellite, we can access the wavel
Using Herschel data from the deepest SPIRE and PACS surveys (HerMES and PEP) in COSMOS and GOODS (N+S), we examine the dust properties of IR-luminous (L_IR>10^10 L_sun) galaxies at 0.1<z<2 and determine how these evolve with cosmic time. The unique a
Gamma-ray bursts (GRBs) are the brightest events in the universe. They have been used in the last five years to study the cosmic chemical evolution, from the local universe to the first stars. The sample size is still relatively small when compared t
Star formation in massive galaxies is quenched at some point during hierarchical mass assembly. To understand where and when the quenching processes takes place, we study the evolution of the total star formation rate per unit total halo mass (Sigma(
We present Herschel (PACS and SPIRE) far-infrared (FIR) photometry of a complete sample of z>1 3CR sources, from the Herschel GT project The Herschel Legacy of distant radio-loud AGN (PI: Barthel). Combining these with existing Spitzer photometric da