ترغب بنشر مسار تعليمي؟ اضغط هنا

High efficiency coherent optical memory with warm rubidium vapour

160   0   0.0 ( 0 )
 نشر من قبل Mahdi Hosseini
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require optical memory as do deterministic logic gates for optical quantum computing. In this paper we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory. We also show storage recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.



قيم البحث

اقرأ أيضاً

A simple and flexible scheme for high-dimensional linear quantum operations on optical transverse spatial modes is demonstrated. The quantum Fourier transformation (QFT) and quantum state tomography (QST) via symmetric informationally complete positi ve operator-valued measures (SIC POVMs) are implemented with dimensionality of 15. The matrix fidelity of QFT is 0.85, while the statistical fidelity of SIC POVMs and fidelity of QST are ~0.97 and up to 0.853, respectively. We believe that our device has the potential for further exploration of high-dimensional spatial entanglement provided by spontaneous parametric down conversion in nonlinear crystals.
A number of techniques exist to use an ensemble of atoms as a quantum memory for light. Many of these propose to use backward retrieval as a way to improve the storage and recall efficiency. We report on a demonstration of an off-resonant Raman memor y that uses backward retrieval to achieve an efficiency of $65pm6%$ at a storage time of one pulse duration. The memory has a characteristic decay time of 60 $mu$s, corresponding to a delay-bandwidth product of $160$.
Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble nee ds both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over $99.5%$ in caesium vapour at high optical depths of up to $sim 2 times 10^5$; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.
We propose a photon echo quantum memory scheme using detuned Raman coupling to long lived ground states. In contrast to previous 3-level schemes based on controlled reversible inhomogeneous broadening that use sequences of $pi$-pulses, the scheme doe s not require accurate control of the coupling dynamics to the ground states. We present a proof of principle experimental realization of our proposal using rubidium atoms in a warm vapour cell. The Raman resonance line is broadened using a magnetic field that varies linearly along the direction of light propagation. Inverting the magnetic field gradient rephases the atomic dipoles and re-emits the light pulse in the forward direction.
We analyze the properties of a pulsed Coherent Population Trapping protocol that uses a controlled decay from the excited state in a $Lambda$-level scheme. We study this problem analytically and numerically and find regimes where narrow transmission, absorption, or fluorescence spectral lines occur. We then look for optimal frequency measurements using these spectral features by computing the Allan deviation in the presence of ground state decoherence and show that the protocol is on a par with Ramsey-CPT. We discuss possible implementations with ensembles of alkali atoms and single ions and demonstrate that typical pulsed-CPT experiments that are realized on femto-second time-scales can be implemented on micro-seconds time-scales using this scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا