ﻻ يوجد ملخص باللغة العربية
It is difficult to reconcile the observed evolution of the star formation rate versus stellar mass (SFR-M*) relation with expectations from current hierarchical galaxy formation models. The observed SFR-M* relation shows a rapid rise in SFR(M*) from z=0-2, and then a surprisingly lack of amplitude evolution out to z~6+. Hierarchical models of galaxy formation match this trend qualitatively but not quantitatively, with a maximum discrepancy of ~x3 in SFR at z~2. One explanation, albeit radical, is that the IMF becomes modestly weighted towards massive stars out to z~2, and then evolves back towards its present-day form by z~4 or so. We observe that this redshift trend mimics that of the cosmic fraction of obscured star formation, perhaps hinting at a physical connection. Such IMF evolution would concurrently go towards explaining persistent discrepancies between integrated measures of star formation and present-day stellar mass or cosmic colors.
This work investigates the alignment of galactic spins with the cosmic web across cosmic time using the cosmological hydrodynamical simulation Horizon-AGN. The cosmic web structure is extracted via the persistent skeleton as implemented in the DISPER
One of the main themes in extragalactic astronomy for the next decade will be the evolution of galaxies over cosmic time. Many future observatories, including JWST, ALMA, GMT, TMT and E-ELT will intensively observe starlight over a broad redshift ran
We present predictions for the evolution of radio emission from Active Galactic Nuclei (AGNs). We use a model that follows the evolution of Supermassive Black Hole (SMBH) masses and spins, within the latest version of the GALFORM semi-analytic model
Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star for