ﻻ يوجد ملخص باللغة العربية
We study the excitation dynamics of an inhomogeneously broadened spin ensemble coupled to a single cavity mode. The collective excitations of the spin ensemble can be described in terms of generalized spin waves and, in the absence of the cavity, the free evolution of the spin ensemble can be described as a drift in the wave number without dispersion. In this article we show that the dynamics in the presence of coupling to the cavity mode can be described solely by a modified time evolution of the wave numbers. In particular, we show that collective excitations with a well- defined wave number pass without dispersion from negative to positive valued wave numbers without populating the zero wave number spin wave mode. The results are relevant for multi-mode collective quantum memories where qubits are encoded in different spin waves.
We study experimentally and theoretically a dense ensemble of negatively charged nitrogen-vacancy centers in diamond coupled to a high $Q$ superconducting coplanar waveguide cavity mode at low temperature. The nitrogen-vacancy centers are modeled as
We achieve the strong coupling regime between an ensemble of phosphorus donor spins in a highly enriched $^{28}$Si crystal and a 3D dielectric resonator. Spins were polarized beyond Boltzmann equilibrium using spin selective optical excitation of the
We consider dynamics of a disordered ensemble of qubits interacting with single mode photon field, which is described by exactly solvable inhomogeneous Dicke model. In particular, we concentrate on the crossover from few-qubit systems to the system o
When the dynamics of a spin ensemble are expressible solely in terms of symmetric processes and collective spin operators, the symmetric collective states of the ensemble are preserved. These many-body states, which are invariant under particle relab
We study the dynamics of a spin ensemble strongly coupled to a single-mode resonator driven by external pulses. When the mean frequency of the spin ensemble is in resonance with the cavity mode, damped Rabi oscillations are found between the spin ens