ترغب بنشر مسار تعليمي؟ اضغط هنا

Noncompact sl(N) spin chains: BGG-resolution, Q-operators and alternating sum representation for finite dimensional transfer matrices

147   0   0.0 ( 0 )
 نشر من قبل Alexander Manashov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study properties of transfer matrices in the sl(N) spin chain models. The transfer matrices with an infinite dimensional auxiliary space are factorized into the product of N commuting Baxter Q-operators. We consider the transfer matrices with auxiliary spaces of a special type (including the finite dimensional ones). It is shown that they can be represented as the alternating sum over the transfer matrices with infinite dimensional auxiliary spaces. We show that certain combinations of the Baxter Q-operators can be identified with the Q-functions which appear in the Nested Bethe Ansatz.



قيم البحث

اقرأ أيضاً

We develop an approach for constructing the Baxter Q-operators for generic sl(N) spin chains. The key element of our approach is the possibility to represent a solution of the the Yang Baxter equation in the factorized form. We prove that such a repr esentation holds for a generic sl(N) invariant R-operator and find the explicit expression for the factorizing operators. Taking trace of monodromy matrices constructed of the factorizing operators one defines a family of commuting (Baxter) operators on the quantum space of the model. We show that a generic transfer matrix factorizes into the product of N Baxter Q-operators and discuss an application of this representation for a derivation of functional relations for transfer matrices.
It is shown that the transfer matrices of homogeneous sl(2) invariant spin chains with generic spin, both closed and open, are factorized into the product of two operators. The latter satisfy the Baxter equation that follows from the structure of the reducible representations of the sl(2) algebra.
The noncompact homogeneous sl(3) invariant spin chains are considered. We show that the transfer matrix with generic auxiliary space is factorized into the product of three sl(3) invariant commuting operators. These operators satisfy the finite diffe rence equations in the spectral parameters which follow from the structure of the reducible sl(3) modules.
108 - Takeo Kojima 2014
We give a bosonization of the quantum affine superalgebra $U_q(widehat{sl}(N|1))$ for an arbitrary level $k in {bf C}$. The bosonization of level $k in {bf C}$ is completely different from those of level $k=1$. From this bosonization, we induce the W akimoto realization whose character coincides with those of the Verma module. We give the screening that commute with $U_q(widehat{sl}(N|1))$. Using this screening, we propose the vertex operator that is the intertwiner among the Wakimoto realization and typical realization. We study non-vanishing property of the correlation function defined by a trace of the vertex operators.
A special case of the geometric Langlands correspondence is given by the relationship between solutions of the Bethe ansatz equations for the Gaudin model and opers - connections on the projective line with extra structure. In this paper, we describe a deformation of this correspondence for $SL(N)$. We introduce a difference equation version of opers called $q$-opers and prove a $q$-Langlands correspondence between nondegenerate solutions of the Bethe ansatz equations for the XXZ model and nondegenerate twisted $q$-opers with regular singularities on the projective line. We show that the quantum/classical duality between the XXZ spin chain and the trigonometric Ruijsenaars-Schneider model may be viewed as a special case of the $q$-Langlands correspondence. We also describe an application of $q$-opers to the equivariant quantum $K$-theory of the cotangent bundles to partial flag varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا