ﻻ يوجد ملخص باللغة العربية
All covariant time operators with normalized probability distribution are derived. Symmetry criteria are invoked to arrive at a unique expression for a given Hamiltonian. As an application, a well known result for the arrival time distribution of a free particle is generalized and extended. Interestingly, the resulting arrival time distribution operator is connected to a particular, positive, quantization of the classical current. For particles in a potential we also introduce and study the notion of conditional arrival-time distribution.
We investigate time operators in the context of quantum time crystals in ring systems. A generalized commutation relation called the generalized weak Weyl relation is used to derive a class of self-adjoint time operators for ring systems with a perio
We provide the most general forms of covariant and normalized time operators and their probability densities, with applications to quantum clocks, the time of arrival, and Lyapunov quantum operators. Examples are discussed of the profusion of possibl
An attempt has been made to investigate the global SU(2) and SU(3) unitary flavor symmetries systematically in terms of quaternion and octonion respectively. It is shown that these symmetries are suitably handled with quaternions and octonions in ord
We analyze status of ${bf C}$, ${bf P}$ and ${bf T}$ discrete symmetries in application to neutron-antineutron transitions breaking conservation of baryon charge ${cal B}$ by two units. At the level of free particles all these symmetries are preserve
Out-of-time-order (OTO) operators have recently become popular diagnostics of quantum chaos in many-body systems. The usual way they are introduced is via a quantization of classical Lyapunov growth, which measures the divergence of classical traject