ﻻ يوجد ملخص باللغة العربية
In the present paper the new multiplier transformations $mathrm{{mathcal{J}% }}_{p}^{delta }(lambda ,mu ,l)$ $(delta ,lgeq 0,;lambda geq mu geq 0;;pin mathrm{% }%mathbb{N} )}$ of multivalent functions is defined. Making use of the operator $mathrm{% {mathcal{J}}}_{p}^{delta }(lambda ,mu ,l),$ two new subclasses $mathcal{% P}_{lambda ,mu ,l}^{delta }(A,B;sigma ,p)$ and $widetilde{mathcal{P}}% _{lambda ,mu ,l}^{delta }(A,B;sigma ,p)$textbf{ }of multivalent analytic functions are introduced and investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums, some applications of fractional calculus and quasi-convolution properties of functions belonging to each of these subclasses $mathcal{P}_{lambda ,mu ,l}^{delta }(A,B;sigma ,p)$ and $widetilde{mathcal{P}}_{lambda ,mu ,l}^{delta }(A,B;sigma ,p)$ are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.
In this paper we introduce and study two new subclasses Sigma_{lambdamu mp}(alpha,beta)$ and $Sigma^{+}_{lambdamu mp}(alpha,beta)$ of meromorphically multivalent functions which are defined by means of a new differential operator. Some results connec
In this work, we consider certain class of bi-univalent functions related with shell-like curves related to $kappa-$Fibonacci numbers. Further, we obtain the estimates of initial Taylor-Maclaurin coefficients (second and third coefficients) and Feket
Making use of Chebyshev polynomials, we obtain upper bound estimate for the second Hankel determinant of a subclass $mathcal{N}_{sigma }^{mu}left( lambda ,tright) $ of bi-univalent function class $sigma.$
Some differential implications of classical Marx-Strohhacker theorem are extended for multivalent functions. These results are also generalized for functions with fixed second coefficient by using the theory of first order differential subordination
Let $phi$ be a normalized convex function defined on open unit disk $mathbb{D}$. For a unified class of normalized analytic functions which satisfy the second order differential subordination $f(z)+ alpha z f(z) prec phi(z)$ for all $zin mathbb{D}$,