ترغب بنشر مسار تعليمي؟ اضغط هنا

Curvature properties of Weyl geometries

155   0   0.0 ( 0 )
 نشر من قبل Peter B. Gilkey
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine relations between geometry and the associated curvature decompositions in Weyl geometry.



قيم البحث

اقرأ أيضاً

89 - Giovanni Catino 2021
Extending Aubins construction of metrics with constant negative scalar curvature, we prove that every $n$-dimensional closed manifold admits a Riemannian metric with constant negative scalar-Weyl curvature, that is $R+t|W|, tinmathbb{R}$. In particul ar, there are no topological obstructions for metrics with $varepsilon$-pinched Weyl curvature and negative scalar curvature.
In this paper, we investigate a class of quadratic Riemannian curvature functionals on closed smooth manifold $M$ of dimension $nge 3$ on the space of Riemannian metrics on $M$ with unit volume. We study the stability of these functionals at the metr ic with constant sectional curvature as its critical point.
154 - Richard H. Bamler 2015
In this paper we prove a compactness result for Ricci flows with bounded scalar curvature and entropy. It states that given any sequence of such Ricci flows, we can pass to a subsequence that converges to a metric space which is smooth away from a se t of codimension $geq 4$. The result has two main consequences: First, it implies that singularities in Ricci flows with bounded scalar curvature have codimension $geq 4$ and, second, it establishes a general form of the Hamilton-Tian Conjecture, which is even true in the Riemannian case. In the course of the proof, we will also establish the following results: $L^{p < 4}$ curvature bounds, integral bounds on the curvature radius, Gromov-Hausdorff closeness of time-slices, an $varepsilon$-regularity theorem for Ricci flows and an improved backwards pseudolocality theorem.
In view of Ehlers-Pirani-Schild formalism, since 1972 Weyl geometries should be considered to be the most appropriate and complete framework to represent (relativistic) gravitational fields. We shall here show that in any given Lorentzian spacetime ( M,g) that admits global timelike vector fields any such vector field u determines an essentially unique Weyl geometry ([g], Gamma) such that u is Gamma-geodesic (i.e. parallel with respect to Gamma).
We investigate the geometry of almost Robinson manifolds, Lorentzian analogues of Hermitian manifolds, defined by Nurowski and Trautman as Lorentzian manifolds of even dimension equipped with a totally null complex distribution of maximal rank. Assoc iated to such a structure, there is a congruence of null curves, which, in dimension four, is geodesic and non-shearing if and only if the complex distribution is involutive. Under suitable conditions, the distribution gives rise to an almost Cauchy--Riemann structure on the leaf space of the congruence. We give a comprehensive classification of such manifolds on the basis of their intrinsic torsion. This includes an investigation of the relation between an almost Robinson structure and the geometric properties of the leaf space of its congruence. We also obtain conformally invariant properties of such a structure, and we finally study an analogue of so-called generalised optical geometries as introduced by Robinson and Trautman.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا