ﻻ يوجد ملخص باللغة العربية
Generalizing Block and Weinbergers characterization of amenability we introduce the notion of uniformly finite homology for a group action on a compact space and use it to give a homological characterization of topological amenability for actions. By considering the case of the natural action of $G$ on its Stone-vCech compactification we obtain a homological characterization of exactness of the group, answering a question of Nigel Higson.
The purpose of this expository article is to revisit the notions of amenability and ergodicity, and to point out that they appear for topological groups that are not necessarily locally compact in articles by Bogolyubov (1939), Fomin (1950), Dixmier (1950), and Rickert (1967).
We show that every free continuous action of a countably infinite elementary amenable group on a finite-dimensional compact metrizable space is almost finite. As a consequence, the crossed products of minimal such actions are $mathcal{Z}$-stable and classified by their Elliott invariant.
Let G be a locally compact group, and let A(G) and B(G) denote its Fourier and Fourier-Stieltjes algebras. These algebras are dual objects of the group and measure algebras, L^1(G) and M(G), in a sense which generalizes the Pontryagin duality theorem
We prove that $Out(F_N)$ is boundary amenable. This also holds more generally for $Out(G)$, where $G$ is either a toral relatively hyperbolic group or a finitely generated right-angled Artin group. As a consequence, all these groups satisfy the Novikov conjecture on higher signatures.
We give a new perspective on the homological characterisations of amenability given by Johnson in the context of bounded cohomology and by Block and Weinberger in the context of uniformly finite homology. We examine the interaction between their theo