ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear spin cooling using Overhauser field selective coherent population trapping

131   0   0.0 ( 0 )
 نشر من قبل Atac Imamoglu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hyperfine interactions with a nuclear spin environment fundamentally limit the coherence properties of confined electron spins in the solid-state. Here, we show that a quantum interference effect in optical absorption from two electronic spin states of a solid-state emitter can be used to prepare the surrounding environment of nuclear spins in well-defined states, thereby suppressing electronic spin dephasing. The evolution of the coupled electron-nuclei system into a coherent population trapping state by optical excitation induced nuclear spin diffusion can be described in terms of Levy flights, in close analogy with sub-recoil laser cooling of atoms. The large difference in electronic and nuclear time scales simultaneously allow for a measurement of the magnetic field produced by nuclear spins, making it possible to turn the lasers that cause the anomalous spin diffusion process off when the strength of the resonance fluorescence reveals that the nuclear spins are in the desired narrow state.



قيم البحث

اقرأ أيضاً

We report high resolution coherent population trapping on a single hole spin in a semiconductor quantum dot. The absorption dip signifying the formation of a dark state exhibits an atomic physics-like dip width of just 10 MHz. We observe fluctuations in the absolute frequency of the absorption dip, evidence of very slow spin dephasing. We identify this process as charge noise by, first, demonstrating that the hole spin g-factor in this configuration (in-plane magnetic field) is strongly dependent on the vertical electric field, and second, by characterizing the charge noise through its effects on the optical transition frequency. An important conclusion is that charge noise is an important hole spin dephasing process.
In high-purity n-type GaAs under strong magnetic field, we are able to isolate a lambda system composed of two Zeeman states of neutral-donor bound electrons and the lowest Zeeman state of bound excitons. When the two-photon detuning of this system i s zero, we observe a pronounced dip in the excited-state photoluminescence indicating the creation of the coherent population-trapped state. Our data are consistent with a steady-state three-level density-matrix model. The observation of coherent population trapping in GaAs indicates that this and similar semiconductor systems could be used for various EIT-type experiments.
Optical spin rotations and cycling transitions for measurement are normally incompatible in quantum dots, presenting a fundamental problem for quantum information applications. Here we show that for a hole spin this problem can be addressed using a t rion with one hole in an excited orbital, where strong spin-orbit interaction tilts the spin. Then, a particular trion triplet forms a double $Lambda$ system, even in a Faraday magnetic field, which we use to demonstrate fast hole spin initialization and coherent population trapping. The lowest trion transitions still strongly preserve spin, thus combining fast optical spin control with cycling transitions for spin readout.
Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions, with properties that are similar to the nitrogen-vacancy defect in diamond. We report experiments on 4H-SiC that investigate all-optical addres sing of spin states with the zero-phonon-line transitions. Our magneto-spectroscopy results identify the spin $S=1$ structure of the ground and excited state, and a role for decay via intersystem crossing. We use these results for demonstrating coherent population trapping of spin states with divacancy ensembles that have particular orientations in the SiC crystal.
Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to iden tify and control individual host nuclear spins. This work presents the first experimental detection and manipulation of a single $^{29}$Si nuclear spin. The quantum non-demolition (QND) single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of $T_2 = 6.3(7)$ ms - in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the $^{29}$Si atom under investigation. These results demonstrate that single $^{29}$Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا