ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite size scaling in Ising-like systems with quenched random fields: Evidence of hyperscaling violation

207   0   0.0 ( 0 )
 نشر من قبل Timo Fischer
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In systems belonging to the universality class of the random field Ising model, the standard hyperscaling relation between critical exponents does not hold, but is replaced by a modified hyperscaling relation. As a result, standard formulations of finite size scaling near critical points break down. In this work, the consequences of modified hyperscaling are analyzed in detail. The most striking outcome is that the free energy cost Delta F of interface formation at the critical point is no longer a universal constant, but instead increases as a power law with system size, Delta F proportional to $L^theta$, with $theta$ the violation of hyperscaling critical exponent, and L the linear extension of the system. This modified behavior facilitates a number of new numerical approaches that can be used to locate critical points in random field systems from finite size simulation data. We test and confirm the new approaches on two random field systems in three dimensions, namely the random field Ising model, and the demixing transition in the Widom-Rowlinson fluid with quenched obstacles.



قيم البحث

اقرأ أيضاً

72 - Masaki Oshikawa 2019
I study the universal finite-size scaling function for the lowest gap of the quantum Ising chain with a one-parameter family of ``defect boundary conditions, which includes periodic, open, and antiperiodic boundary conditions as special cases. The un iversal behavior can be described by the Majorana fermion field theory in $1+1$ dimensions, with the mass proportional to the deviation from the critical point. Although the field theory appears to be symmetric with respect to the inversion of the mass (Kramers-Wannier duality), the actual gap is asymmetric, reflecting the spontaneous symmetry breaking in the ordered phase which leads to the two-fold ground-state degeneracy in the thermodynamic limit. The asymptotic ground-state degeneracy in the ordered phase is realized by (i) formation of a bound state at the defect (except for the periodic/antiperiodic boundary condition) and (ii) effective reversal of the fermion number parity in one of the sectors (except for the open boundary condition), resulting in a rather nontrivial crossover ``phase diagram in the space of the boundary condition (defect strength) and mass.
143 - C.J. Hamer 2000
Energy eigenvalues and order parameters are calculated by exact diagonalization for the transverse Ising model on square lattices of up to 6x6 sites. Finite-size scaling is used to estimate the critical parameters of the model, confirming universalit y with the three-dimensional classical Ising model. Critical amplitudes are also estimated for both the energy gap and the ground-state energy.
We study the equilibrium properties of an Ising model on a disordered random network where the disorder can be quenched or annealed. The network consists of four-fold coordinated sites connected via variable length one-dimensional chains. Our emphasi s is on nonuniversal properties and we consider the transition temperature and other equilibrium thermodynamic properties, including those associated with one dimensional fluctuations arising from the chains. We use analytic methods in the annealed case, and a Monte Carlo simulation for the quenched disorder. Our objective is to study the difference between quenched and annealed results with a broad random distribution of interaction parameters. The former represents a situation where the time scale associated with the randomness is very long and the corresponding degrees of freedom can be viewed as frozen, while the annealed case models the situation where this is not so. We find that the transition temperature and the entropy associated with one dimensional fluctuations are always higher for quenched disorder than in the annealed case. These differences increase with the strength of the disorder up to a saturating value. We discuss our results in connection to physical systems where a broad distribution of interaction strengths is present.
129 - Isao Nishikawa , Gouhei Tanaka , 2013
Universal scaling laws form one of the central issues in physics. A non-standard scaling law or a breakdown of a standard scaling law, on the other hand, can often lead to the finding of a new universality class in physical systems. Recently, we foun d that a statistical quantity related to fluctuations follows a non-standard scaling law with respect to system size in a synchronized state of globally coupled non-identical phase oscillators [Nishikawa et al., Chaos $boldsymbol{22}$, 013133 (2012)]. However, it is still unclear how widely this non-standard scaling law is observed. In the present paper, we discuss the conditions required for the unusual scaling law in globally coupled oscillator systems, and we validate the conditions by numerical simulations of several different models.
As in the preceding paper we aim at identifying the effective theory that describes the fluctuations of the local overlap with an equilibrium reference configuration close to a putative thermodynamic glass transition. We focus here on the case of fin ite-dimensional glass-forming systems, in particular supercooled liquids. The main difficulty for going beyond the mean-field treatment comes from the presence of diverging point-to-set spatial correlations. We introduce a variational low-temperature approximation scheme that allows us to account, at least in part, for the effect of these correlations. The outcome is an effective theory for the overlap fluctuations in terms of a random-field + random-bond Ising model with additional, power-law decaying, pair and multi-body interactions generated by the point-to-set correlations. This theory is much more tractable than the original problem. We check the robustness of the approximation scheme by applying it to a fully connected model already studied in the companion paper. We discuss the physical implications of this mapping for glass-forming liquids and the possibility it offers to determine the presence or not of a finite-temperature thermodynamic glass transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا