ﻻ يوجد ملخص باللغة العربية
We show that the Kisin varieties associated to simple $phi$-modules of rank $2$ are connected in the case of an arbitrary cocharacter. This proves that the connected components of the generic fiber of the flat deformation ring of an irreducible $2$-dimensional Galois representation of a local field are precisely the components where the multiplicities of the Hodge-Tate weights are fixed.
In this paper we consider certain closed subvarieties of the flag variety, known as Hessenberg varieties. We give a connectedness criterion for semisimple Hessenberg varieties generalizing a criterion given by Anderson and Tymoczko. We show that nilp
We give a criterion which determines when a union of one-dimensional Deligne-Lusztig varieties has a connected closure. We also obtain a new, short proof of the connectedness criterion for Deligne-Lusztig varieties due to Lusztig.
In this paper, we give an affirmative answer to a conjecture in the Minimal Model Program. We prove that log $Q$-Fano varieties of dim $n$ are rationally connected. We also study the behavior of the canonical bundles under projective morphisms.
We define and study Harder-Narasimhan filtrations on Breuil-Kisin-Fargues modules and related objects relevant to p-adic Hodge theory.
Let $Xsubset mathbb{P}^r$ be an integral and non-degenerate variety. Let $sigma _{a,b}(X)subseteq mathbb{P}^r$, $(a,b)in mathbb{N}^2$, be the join of $a$ copies of $X$ and $b$ copies of the tangential variety of $X$. Using the classical Alexander-Hir