ﻻ يوجد ملخص باللغة العربية
A new formulation of chiral fermions on the lattice is presented. It is a version of overlap fermions, but built from the computationally efficient staggered fermions rather than the previously used Wilson fermions. The construction reduces the four quark flavors described by the staggered fermion to two quark flavors; this pair can be taken as the up and down quarks in Lattice QCD. The exact flavored chiral symmetry of the staggered fermion gets converted into an unflavored Ginsparg-Wilson chiral symmetry of the new overlap fermion, which also has pairs of exact chiral zero-modes satisfying the Index Theorem. Stability under radiative corrections is checked. A domain wall formulation giving a truncation of this overlap construction is also outlined.
Recently, the interest in local lattice actions for chiral fermions has revived, with the proposition of new local actions in which only the minimal number of doublers appear. The trigger role of graphene having a minimally doubled, chirally invarian
We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that has greatly reduced one-loop taste-exchange errors, no tree-level order a^2 errors, and no tree-level order (am)^4 errors to leading order in the quarks veloc
With sufficiently light up and down quarks the isovector ($a_0$) and isosinglet ($f_0$) scalar meson propagators are dominated at large distance by two-meson states. In the staggered fermion formulation of lattice quantum chromodynamics, taste-symmet
We investigate numerically the spectral flow introduced by Adams for the staggered Dirac operator on realistic (quenched) gauge configurations. We obtain clear numerical evidence that the definition works as expected: there is a clear separation betw
A way to identify the would-be zero-modes of staggered lattice fermions away from the continuum limit is presented. Our approach also identifies the chiralities of these modes, and their index is seen to be determined by gauge field topology in accor