ﻻ يوجد ملخص باللغة العربية
We investigate FeII emission in Broad Line Region (BLR) of AGNs by analyzing the FeII(UV), FeII(4570) and MgII emission lines in 884 quasars in the Sloan Digital Sky Survey (SDSS) Quasar catalog in a redshift range of 0.727 < z < 0.804. FeII(4570)/FeII(UV) is used to infer the column density of FeII-emitting clouds and explore the excitation mechanism of FeII emission lines. As suggested before in various works, the classical photoionization models fail to account for FeII(4570)/FeII(UV) by a factor of 10, which may suggest anisotropy of UV FeII emission; otherwise, an alternative heating mechanism like shock is working. The column density distribution derived from FeII(4570)/FeII(UV) indicates that radiation pressure plays an important role in BLR gas dynamics. We find a positive correlation between FeII(4570)/FeII(UV) and the Eddington ratio. We also find that almost all FeII-emitting clouds are to be under super-Eddington conditions unless ionizing photon fraction is much smaller than that previously suggested. Finally we propose a physical interpretation of a striking set of correlations between various emission-line properties, known as ``Eigenvector 1.
The variability of quasars across multiple wavelengths is a useful probe of physical conditions in active galactic nuclei. In particular, variable accretion rates, instabilities, and reverberation effects in the accretion disk of a supermassive black
We present Chandra observations of 2106 radio-quiet quasars in the redshift range 1.7<z<2.7 from the Sloan Digital Sky Survey (SDSS), through data release fourteen (DR14), that do not contain broad absorption lines (BAL) in their rest-frame UV spectr
It is found that feii emission contributes significantly to the optical and ultraviolet spectra of most active galactic nuclei. The origin of the optical/UV feii emission is still a question open to debate. The variability of feii would give clues to
We have used optical V and R band observations from the Massive Compact Halo Object (MACHO) project on a sample of 59 quasars behind the Magellanic clouds to study their long term optical flux and colour variations. These quasars lying in the redshif
We present a study of the relation between X-rays and ultraviolet emission in quasars for a sample of broad-line, radio-quiet objects obtained from the cross-match of the Sloan Digital Sky Survey DR14 with the latest Chandra Source Catalog 2.0 (2,332