ﻻ يوجد ملخص باللغة العربية
Using a high resolution radio image, we successfully resolve the two fold image components B and C of the quasar lens system SDSS J1029+2623. The flux anomalies associated with these two components in the optical regime persist, albeit less strongly, in our radio observations, suggesting that the cluster must be modeled by something more than a single central potential. We argue that placing substructure close to one of the components can account for a flux anomaly with negligible changes in the component positions. Our best fit model has a substructure mass of ~10^8 solar masses up to the mass-sheet degeneracy, located roughly 0.1 arcsecs West and 0.1 arcsecs North of component B. We demonstrate that a positional offset between the centers of the source components can explain the differences between the optical and radio flux ratios.
We identify a third image in the unique quasar lens SDSS J1029+2623, the second known quasar lens produced by a massive cluster of galaxies. The spectrum of the third image shows similar emission and absorption features, but has a redder continuum th
We study the origin of absorption features on the blue side of the C IV broad emission line of the large-separation lensed quasar SDSS J1029+2623 at z_em ~ 2.197. The quasar images, produced by a foreground cluster of galaxies, have a maximum separat
We report the discovery of a cluster-scale lensed quasar, SDSS J1029+2623, selected from the Sloan Digital Sky Survey. The lens system exhibits two lensed images of a quasar at z_s=2.197. The image separation of 22.5 makes it the largest separation l
We exploit the widely-separated images of the lensed quasar SDSS J1029+2623 ($z_{em}$=2.197, $theta =22^{primeprime}!!.5$) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two wi
We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/HDS, we performed high-resolution ($R$ $sim$ 36,00