ﻻ يوجد ملخص باللغة العربية
Quantum-mechanical principles can be used to process information (QIP). In one approach, linear arrays of trapped, laser cooled ion qubits (two-level quantum systems) are confined in segmented multi-zone electrode structures. The ion trap approach to QIP requires trapping and control of numerous ions in electrode structures with many trapping zones. I investigated microfabrication of structures to trap, transport and couple large numbers of ions. Using 24Mg+ I demonstrated loading and transport between zones in microtraps made of boron doped silicon. This thesis describes the fundamentals of ion trapping, the characteristics of silicon-based traps amenable to QIP work and apparatus to trap ions and characterize traps. Microfabrication instructions appropriate for nonexperts are included. Ion motional heating was measured. <<>> Using MEMs techniques I built a Si micro-mechanical oscillator and demonstrated a method to reduce the kinetic energy of its lowest order mechanical mode via capacitive coupling to a driven radio frequency (RF) oscillator. Cooling resulted from a RF capacitive force, phase shifted relative to the cantilever motion. The technique was demonstrated by cooling the 7 kHz fundamental mode from room temperature to 45 K. <<>> I also discuss an implementation of the semiclassical quantum Fourier transform (QFT) using three beryllium ion qubits. The QFT is a crucial step in a number of quantum algorithms including Shors algorithm, a quantum approach to integer factorization which is exponentially faster than the fastest known classical factoring algorithm. This demonstration incorporated the key elements of a scalable ion-trap architecture for QIP.
Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, tran
Moving trapped-ion qubits in a microstructured array of radiofrequency traps offers a route towards realizing scalable quantum processing nodes. Establishing such nodes, providing sufficient functionality to represent a building block for emerging qu
We report a demonstration of simple and effective loading of strontium ions into a linear radio frequency Paul trap using photoionization. The ionization pathway is 5s2 1S0 -- 5s5p 1P1 -- 5p2 1D2, and the 5p2 1D2 final state is auto-ionizing. Both tr
Quantum logic gates with many control qubits are essential in many quantum algorithms, but remain challenging to perform in current experiments. Trapped ion quantum computers natively feature a different type of entangling operation, namely the Molme
Highly efficient, nearly deterministic, and isotope selective generation of Yb$^+$ ions by 1- and 2-color photoionization is demonstrated. State preparation and state selective detection of hyperfine states in ybodd is investigated in order to optimi