ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental probing of exchange interactions between localized spins in the dilute magnetic insulator (Ga,Mn)N

117   0   0.0 ( 0 )
 نشر من قبل Dariusz Sztenkiel
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The sign, magnitude, and range of the exchange couplings between pairs of Mn ions is determined for (Ga,Mn)N and (Ga,Mn)N:Si with x < 3%. The samples have been grown by metalorganic vapor phase epitaxy and characterized by secondary-ion mass spectroscopy; high-resolution transmission electron microscopy with capabilities allowing for chemical analysis, including the annular dark-field mode and electron energy loss spectroscopy; high-resolution and synchrotron x-ray diffraction; synchrotron extended x-ray absorption fine-structure; synchrotron x-ray absorption near-edge structure; infra-red optics and electron spin resonance. The results of high resolution magnetic measurements and their quantitative interpretation have allowed to verify a series of ab initio predictions on the possibility of ferromagnetism in dilute magnetic insulators and to demonstrate that the interaction changes from ferromagnetic to antiferromagnetic when the charge state of the Mn ions is reduced from 3+ to 2+.



قيم البحث

اقرأ أيضاً

We perform a theoretical study, using {it ab initio} total energy density-functional calculations, of the effects of disorder on the $Mn-Mn$ exchange interactions for $Ga_{1-x}Mn_xAs$ diluted semiconductors. For a 128 atoms supercell, we consider a v ariety of configurations with 2, 3 and 4 Mn atoms, which correspond to concentrations of 3.1%, 4.7%, and 6.3%, respectively. In this way, the disorder is intrinsically considered in the calculations. Using a Heisenberg Hamiltonian to map the magnetic excitations, and {it ab initio} total energy calculations, we obtain the effective $JMn$, from first ($n=1$) all the way up to sixth ($n=6$) neighbors. Calculated results show a clear dependence in the magnitudes of the $JMn$ with the Mn concentration $x$. Also, configurational disorder and/or clustering effects lead to large dispersions in the Mn-Mn exchange interactions, in the case of fixed Mn concentration. Moreover, theoretical results for the ground-state total energies for several configurations indicate the importance of a proper consideration of disorder in treating temperature and annealing effects.
Magnetic and magneto-transport properties of thin layers of the (Ga,Mn)(Bi,As) quaternary dilute magnetic semiconductor grown by the low-temperature molecular-beam epitaxy technique on GaAs substrates have been investigated. Ferromagnetic Curie tempe rature and magneto-crystalline anisotropy of the layers have been examined by using magneto-optical Kerr effect magnetometry and low-temperature magneto-transport measurements. Postgrowth annealing treatment has been shown to enhance the hole concentration and Curie temperature in the layers. Significant increase in the magnitude of magnetotransport effects caused by incorporation of a small amount of Bi into the (Ga,Mn)As layers revealed in the planar Hall effect (PHE) measurements, is interpreted as a result of enhanced spin-orbit coupling in the (Ga,Mn)(Bi,As) layers. Two-state behaviour of the planar Hall resistance at zero magnetic field provides its usefulness for applications in nonvolatile memory devices.
We present an experimental study for polycrystalline samples of the diluted magnetic semiconductor Mn(x)Ga(1-x)N (x<0.04) in order to address some of the existing controversial issues. Different techniques were used to characterize the electronic, ma gnetic, and structural properties of the samples, and inelastic neutron scattering was employed to determine the magnetic excitations associated with Mn monomers and dimers. Our main conclusions are as follows: (i) The valence of the Mn ions is 2+. (ii) The Mn(2+) ions experience a substantial single-ion axial anisotropy with parameter D=0.027(3) meV. (iii) Nearest-neighbor Mn(2+) ions are coupled antiferromagnetically. The exchange parameter J= 0.140(7) meV is independent of the Mn content x, i.e., there is no evidence for hole-induced modifications of J towards a potentially high Curie temperature postulated in the literature.
The magnetic properties of dilute magnetic semiconductors (DMS) are calculated from first-principles by mapping the ab initio results on a classical Heisenberg model. It is found that the range of the exchange interaction in (Ga, Mn)N is very short r anged due to the exponential decay of the impurity wave function in the gap. Curie temperatures (Tc) of DMS are calculated by using the Monte Carlo method. It is found that the Tc values of (Ga, Mn)N are very low since, due to the short ranged interaction, percolation of the ferromagnetic coupling is difficult to achieve for small concentrations.
The effect of microscopic Mn cluster distribution on the Curie temperature (Tc) is studied using density-functional calculations. We find that the calculated Tc depends crucially on the microscopic cluster distribution, which can explain the abnormal ly large variations in experimental Tc values from a few K to well above room temperature. The partially dimerized Mn_2-Mn_1 distribution is found to give the highest Tc > 500 K, and in general, the presence of the Mn_2 dimer has a tendency to enhance Tc. The lowest Tc values close to zero are obtained for the Mn_4-Mn_1 and Mn_4-Mn_3 distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا