ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface defects and conduction in polar oxide heterostructures

141   0   0.0 ( 0 )
 نشر من قبل Nicholas Bristowe
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The polar interface between LaAlO$_{3}$ and SrTiO$_{3}$ has shown promise as a field effect transistor, with reduced (nanoscale) feature sizes and potentially added functionality over conventional semiconductor systems. However, the mobility of the interfacial two-dimensional electron gas (2DEG) is lower than desirable. Therefore to progress, the highly debated origin of the 2DEG must be understood. Here we present a case for surface redox reactions as the origin of the 2DEG, in particular surface O vacancies, using a model supported by first principles calculations that describes the redox formation. In agreement with recent spectroscopic and transport measurements, we predict a stabilization of such redox processes (and hence Ti 3$d$ occupation) with film thickness beyond a critical value, which can be smaller than the critical thickness for 2D electronic conduction, since the surface defects generate trapping potentials that will affect the interface electron mobility. Several other recent experimental results, such as lack of core level broadening and shifts, find natural explanation. Pristine systems will likely require changed growth conditions or modified materials with a higher vacancy free energy.



قيم البحث

اقرأ أيضاً

99 - Ke Huang , Tao Wang , Mengjia Jin 2021
Empowering conventional materials with unexpected magnetoelectric properties is appealing to the multi-functionalization of existing devices and the exploration of future electronics. Recently, owing to its unique effect in modulating a matters prope rties, ultra-small dopants, e.g. H, D, and Li, attract enormous attention in creating emergent functionalities, such as superconductivity, and metal-insulator transition. Here, we report an observation of bipolar conduction accompanied by a giant positive magnetoresistance in D-doped metallic Ti oxide (TiOxDy) films. To overcome the challenges in intercalating the D into a crystalline oxide, a series of TiOxDy were formed by sequentially doping Ti with D and surface/interface oxidation. Intriguingly, while the electron mobility of the TiOxDy increases by an order of magnitude larger after doping, the emergent holes also exhibit high mobility. Moreover, the bipolar conduction induces a giant magnetoresistance up to 900% at 6 T, which is ~6 times higher than its conventional phase. Our study paves a way to empower conventional materials in existing electronics and induce novel electronic phases.
We investigate the effect of low-coordinated surface atoms on the defect-induced magnetism in MgO nanocrystallites using hybrid density functional theory calculations. It has been demonstrated that when Mg vacancies are introduced at the corners of c ube-like MgO clusters, a magnetic state becomes lower in total energy than the nonmagnetic singlet state by 1-2 eV, resulting in the spin-polarized ground state. The spin density is not only located at the surrounding O atoms neighbor to the corner Mg vacancy site but is also extended to the distant (1 nm or longer) low-coordinated surface O atoms along the <110> directions. This directional spin delocalization allows a remote Mg vacancy-Mg vacancyinteraction, eventually leading to a spontaneous long-range ferromagnetic interaction.
244 - Xinxia Li , Yaping Yan , Lan Dong 2017
The needs for efficient heat removal and superior thermal conduction in nano/micro devices have triggered tremendous studies in low-dimensional materials with high thermal conductivity. Hexagonal boron nitride (h-BN) is believed to be one of the cand idates for thermal management and heat dissipation due to its novel physical properties, i.e. thermal conductor and electrical insulator. Here we reported interfacial thermal resistance between few-layer h-BN and its silicon oxide substrate using differential 3 omega method. The measured interfacial thermal resistance is around ~1.6*10-8 m2K/W for monolayer h-BN and ~3.4*10-8 m2K/W for 12.8nm-thick h-BN in metal/h-BN/SiO2 interfaces. Our results suggest that the voids and gaps between substrate and thick h-BN flakes limit the interfacial thermal conduction. This work provides a deeper understanding of utilizing h-BN flake as lateral heat spreader in electronic and optoelectronic nano/micro devices with further miniaturization and integration.
In the quest for topological insulators with large band gaps, heterostructures with Rashba spin-orbit interactions come into play. Transition metal oxides with heavy ions are especially interesting in this respect. We discuss the design principles fo r stacking oxide Rashba layers. Assuming a single layer with a two-dimensional electron gas (2DEG) on both interfaces as a building block, a two-dimensional topological insulating phase is present when negative coupling between the 2DEGs exists. When stacking multiple building blocks, a two-dimensional or three-dimensional topological insulator is artificially created, depending on the intra- and interlayer coupling strengths and the number of building blocks. We show that the three-dimensional topological insulator is protected by reflection symmetry, and can therefore be classified as a topological crystalline insulator. In order to isolate the topological states from bulk states, the intralayer coupling term needs to be quadratic in momentum. It is described how such a quadratic coupling could potentially be realized by taking buckling within the layers into account. The buckling, thereby, brings the idea of stacked Rashba system very close to the alternative approach of realizing the buckled honeycomb lattice in [111]-oriented perovskite oxides.
The interfacial behavior of quantum materials leads to emergent phenomena such as two dimensional electron gases, quantum phase transitions, and metastable functional phases. Probes for in situ and real time surface sensitive characterization are cri tical for active monitoring and control of epitaxial synthesis, and hence the atomic-scale engineering of heterostructures and superlattices. Termination switching, especially as an interfacial process in ternary complex oxides, has been studied using a variety of probes, often ex situ; however, direct observation of this phenomena is lacking. To address this need, we establish in situ and real time reflection high energy electron diffraction and Auger electron spectroscopy for pulsed laser deposition, which provide structural and compositional information of the surface during film deposition. Using this unique capability, we show, for the first time, the direct observation and control of surface termination in complex oxide heterostructures of SrTiO3 and SrRuO3. Density-functional-theory calculations capture the energetics and stability of the observed structures and elucidate their electronic behavior. This demonstration opens up a novel approach to monitor and control the composition of materials at the atomic scale to enable next-generation heterostructures for control over emergent phenomena, as well as electronics, photonics, and energy applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا