ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of the Electric Form Factor of the Neutron up to Q2=3.4 GeV2 using the Reaction He3(e,en)pp

168   0   0.0 ( 0 )
 نشر من قبل Bogdan Wojtsekhowski
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The electric form factor of the neutron was determined from studies of the reaction He3(e,en)pp in quasi-elastic kinematics in Hall A at Jefferson Lab. Longitudinally polarized electrons were scattered off a polarized target in which the nuclear polarization was oriented perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons that were registered in a large-solid-angle detector. More than doubling the Q2-range over which it is known, we find GEn = 0.0225 +/- 0.0017 (stat) +/- 0.0024 (syst), 0.0200 +/- 0.0023 +/- 0.0018, and 0.0142 +/- 0.0019 +/- 0.0013 for Q2 = 1.72, 2.48, and 3.41 GeV2, respectively.



قيم البحث

اقرأ أيضاً

A measurement of beam helicity asymmetries in the reaction 3He(e,en)pp has been performed at the Mainz Microtron in quasielastic kinematics in order to determine the electric to magnetic form factor ratio of the neutron, GEn/GMn, at a four momentum t ransfer Q2 = 1.58 GeV2. Longitudinally polarized electrons were scattered on a highly polarized 3He gas target. The scattered electrons were detected with a high-resolution magnetic spectrometer, and the ejected neutrons with a dedicated neutron detector composed of scintillator bars. To reduce systematic errors data were taken for four different target polarization orientations allowing the determination of GEn/GMn from a double ratio. We find mu_n GEn/GMn = 0.250 +/- 0.058(stat.) +/- 0.017 (sys.).
We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720~MeV. A Siberian snake was empl oyed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter A^V_{ed} was measured for the reaction pol{2H}(pol{e},en)p at a four-momentum transfer squared of 0.21 (GeV/c)^2 from which a value for the charge form factor of the neutron was extracted.
We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720 MeV. A Siberian snake was empl oyed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter $A^V_{ed}$ was measured for the reaction $^2 vec{rm H}(vec e,e^prime n)p$ at a four-momentum transfer squared of 0.21~(GeV/$c$)$^2$ from which a value for the charge form factor of the neutron was extracted.
The kaon electroproduction reaction 1H(e,eK+)Lambda was studied as a function of the virtual-photon four-momentum, Q2, total energy, W, and momentum transfer, t, for different values of the virtual- photon polarization parameter. Data were taken at e lectron beam energies ranging from 3.40 to 5.75 GeV. The center of mass cross section was determined for 21 kinematics corresponding to Q2 of 1.90 and 2.35 GeV2 and the longitudinal, sigmaL, and transverse, sigmaT, cross sections were separated using the Rosenbluth technique at fixed W and t. The separated cross sections reveal a flat energy dependence at forward kaon angles not satisfactorily described by existing electroproduction models. Influence of the kaon pole on the cross sections was investigated by adopting an off-shell form factor in the Regge model which better describes the observed energy dependence of sigmaT and sigmaL.
The neutron elastic magnetic form factor GMn has been extracted from quasielastic electron scattering data on deuterium with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic coverage of the measurement is continuous from Q2=1 GeV2 to 4.8 GeV2. High precision was achieved by employing a ratio technique in which many uncertainties cancel, and by a simultaneous in-situ calibration of the neutron detection efficiency, the largest correction to the data. Neutrons were detected using the CLAS electromagnetic calorimeters and the time-of-flight scintillators. Data were taken at two different electron beam energies, allowing up to four semi-independent measurements of GMn to be made at each value of Q2. The dipole parameterization is found to provide a good description of the data over the measured Q2 range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا