ﻻ يوجد ملخص باللغة العربية
We present an efficient separable approach to the estimation and reconstruction of the bispectrum and the trispectrum from observational (or simulated) large scale structure data. This is developed from general CMB (poly-)spectra methods which exploit the fact that the bispectrum and trispectrum in the literature can be represented by a separable mode expansion which converges rapidly (with $n_textrm{max}={cal{O}}(30)$ terms). With an effective grid resolution $l_textrm{max}$ (number of particles/grid points $N=l_textrm{max}^3$), we present a bispectrum estimator which requires only ${cal O}(n_textrm{max} times l_textrm{max}^3)$ operations, along with a corresponding method for direct bispectrum reconstruction. This method is extended to the trispectrum revealing an estimator which requires only ${cal O}(n_textrm{max}^{4/3} times l_textrm{max}^3)$ operations. The complexity in calculating the trispectrum in this method is now involved in the original decomposition and orthogonalisation process which need only be performed once for each model. However, for non-diagonal trispectra these processes present little extra difficulty and may be performed in ${cal O}(l_textrm{max}^4)$ operations. A discussion of how the methodology may be applied to the quadspectrum is also given. An efficient algorithm for the generation of arbitrary nonGaussian initial conditions for use in N-body codes using this separable approach is described. This prescription allows for the production of nonGaussian initial conditions for arbitrary bispectra and trispectra. A brief outline of the key issues involved in parameter estimation, particularly in the non-linear regime, is also given.
An important aspect of large-scale structure data analysis is the presence of non-negligible theoretical uncertainties, which become increasingly important on small scales. We show how to incorporate these uncertainties in realistic power spectrum li
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based
We present a case study describing efforts to optimise and modernise Modal, the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-p
Power suppression of the cosmic microwave background on the largest observable scales could provide valuable clues about the particle physics underlying inflation. Here we consider the prospect of power suppression in the context of the multifield la