ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Cluster Environments of Radio Sources

221   0   0.0 ( 0 )
 نشر من قبل Joshua Wing
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the Sloan Digital Sky Survey (SDSS) and the FIRST (Faint Images of the Radio Sky at Twenty Centimeters) catalogs, we examined the optical environments around double-lobed radio sources. Previous studies have shown that multi-component radio sources exhibiting some degree of bending between components are likely to be found in galaxy clusters. Often this radio emission is associated with a cD-type galaxy at the center of a cluster. We cross-correlated the SDSS and FIRST catalogs and measured the richness of the cluster environments surrounding both bent and straight multi-component radio sources. This led to the discovery and classification of a large number of galaxy clusters out to a redshift of z ~ 0.5. We divided our sample into smaller subgroups based on their optical and radio properties. We find that FR I radio sources are more likely to be found in galaxy clusters than FR II sources. Further, we find that bent radio sources are more often found in galaxy clusters than non-bent radio sources. We also examined the environments around single-component radio sources and find that single-component radio sources are less likely to be associated with galaxy clusters than extended, multi-component radio sources. Bent, visually-selected sources are found in clusters or rich groups ~78% of the time. Those without optical hosts in SDSS are likely associated with clusters at even higher redshifts, most with redshifts of z > 0.7.



قيم البحث

اقرأ أيضاً

The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, consid ering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters.
115 - Brian J. Morsony 2012
Bent-double radio sources have been used as a probe to measure the density of intergalactic gas in galaxy groups. We carry out a series of high-resolution, 3D simulations of AGN jets moving through an external medium with a constant density in order to develop a general formula for the radius of curvature of the jets, and to determine how accurately the density of the intra-group medium (IGM) can be measured. Our simulations produce curved jets ending in bright radio lobes with an extended trail of low surface brightness radio emission. The radius of curvature of the jets varies with time by only about 25%. The radio trail seen in our simulations is typically not detected in known sources, but may be detectable in lower resolution radio observations. The length of this tail can be used to determine the age of the AGN. We also use our simulation data to derive a formula for the kinetic luminosity of observed jets in terms of the radius of curvature and jet pressure. In characterizing how well observations can measure the IGM density, we find that the limited resolution of typical radio observations leads to a systematic under-estimate of the density of about 50%. The unknown angles between the observer and the direction of jet propagation and direction of AGN motion through the IGM leads to an uncertainty of about 50% in estimates of the IGM density. Previous conclusions drawn using these sources, indicating that galaxy groups contain significant reservoirs of baryons in their IGM, are still valid when considering this level of uncertainty. In addition, we model the X-ray emission expected from bent-double radio sources. We find that known sources in reasonably dense environments should be detectable in ~100 ks Chandra observations. X-ray observations of these sources would place constraints on the IGM density and AGN velocity that are complementary to radio observations.
Using radio sources from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey, and optical counterparts in the Sloan Digital Sky Survey (SDSS), we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.
129 - Kaustuv Basu 2012
We present correlation results for the radio halo power in galaxy clusters with the integrated thermal Sunyaev-Zeldovich (SZ) effect signal, including new results obtained at sub-GHz frequencies. The radio data is compiled from several published work s, and the SZ measurements are taken from the Planck ESZ cluster catalog. The tight correlation between the radio halo power and the SZ effect demonstrates a clear correspondence between the thermal and non-thermal electron populations in the intra-cluster medium, as already has been shown in X-ray based studies. The radio power varies roughly as the square of the global SZ signal, but when the SZ signal is scaled to within the radio halo radius the correlation becomes approximately linear, with reduced intrinsic scatter. We do not find any strong indication of a bi-modal division in the radio halo cluster population, as has been reported in the literature, which suggests that such duality could be an artifact of X-ray selection. We compare the SZ signal dependence of radio halos with simplified predictions from theoretical models, and discuss some implications and shortcomings of the present work.
We have carried out multi-colour imaging of the fields of a statistically complete sample of low-frequency selected radio loud quasars at 0.6<z<1.1, in order to determine the characteristics of their environments. The largest radio sources are locate d in the field, and smaller steep-spectrum sources are more likely to be found in richer environments, from compact groups through to clusters. This radio-based selection (including source size) of high redshift groups and clusters is a highly efficient method of detecting rich environments at these redshifts. Although our single filter clustering measures agree with those of other workers, we show that these statistics cannot be used reliably on fields individually, colour information is required for this.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا