ﻻ يوجد ملخص باللغة العربية
The interplay between magnetism and superconductivity has been a central issue in unconventional superconductors. While the dynamic magnetism could be the source of electron pairing, the static magnetism is generally believed to compete with superconductivity. In this sense, the observation of Q phase, the coupled spin-density wave order and superconductivity, in the heavy-fermion superconductor CeCoIn5 is very puzzling. Whether this Q phase origins from the novel Fulde-Ferrel-Larkin-Ovchinnikov state is under hot debate. Here we report the resistivity and thermal conductivity study of a newly discovered heavy-fermion superconductor Ce2PdIn8 down to 50 mK. We find an unusual field-induced quantum critical point at the upper critical field Hc2 and unconventional nodal superconductivity in Ce2PdIn8. The jump of thermal conductivity k(H)/T near Hc2 suggests a first-order-like phase transition at low temperatures. These results mimic the features of the Q phase in CeCoIn5, implying that Ce2PdIn8 is another promising compound to investigate the exotic Q phase and FFLO state. The comparison between CeCoIn5 and Ce2PdIn8 may help to clarify the origin of the Q phase.
We report field-orientation specific heat studies of the pressure-induced heavy fermion superconductor CeRhIn5. Theses experiments provide the momentum-dependent superconducting gap function for the first time in any pressure-induced superconductor.
Understanding the origin of superconductivity in strongly correlated electron systems continues to be at the forefront of unsolved problems in all of physics. Among the heavy f-electron systems, CeCoIn5 is one of the most fascinating, as it shares ma
Solution growth of single crystals of the recently reported new compound Ce2PdIn8 was investigated. When growing from a stoichiometry in a range 2:1:20 - 2:1:35, single crystals of CeIn3 covered by a thin (~50 um) single-crystalline layer of Ce2PdIn8
Resistivity and Hall effect measurements of EuFe$_2$As$_2$ up to 3.2,GPa indicate no divergence of quasiparticle effective mass at the pressure $P_mathrm{c}$ where the magnetic and structural transition disappears. This is corroborated by analysis of
The heavy fermion CeMIn5 family with M = Co, Rh, Ir provide a prototypical example of strange superconductors with unconventional d-wave pairing and strange metal normal state, emerged near an antiferromagnetic quantum critical point. The microscopic