ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Nature of Short Swift Bursts via Deep INTEGRAL Monitoring of GRB 050925

155   0   0.0 ( 0 )
 نشر من قبل Takanori Sakamoto
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in the region of GRB 050925. This short Swift burst is a candidate for a newly discovered soft gamma-ray repeater (SGR) with the following observational burst properties: 1) galactic plane (b=-0.1 deg) localization, 2) 150 msec duration, and 3) a blackbody rather than a simple power-law spectral shape (with a significance level of 97%). We found two possible X-ray counterparts of GRB 050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray sources show the transient behavior with a power-law decay index shallower than -1. We found no hard X-ray emission nor any additional burst from the location of GRB 050925 in ~5 Ms of INTEGRAL data. We discuss about the three BATSE short bursts which might be associated with GRB 050925, based on their location and the duration. Assuming GRB 050925 is associated with the H II regions (W 58) at the galactic longitude of l=70 deg, we also discuss the source frame properties of GRB 050925.



قيم البحث

اقرأ أيضاً

GRB 090426 is a short duration burst detected by Swift ($T_{90}sim 1.28$ s in the observer frame, and $T_{90}sim 0.33$ s in the burst frame at $z=2.609$). Its host galaxy properties and some $gamma$-ray related correlations are analogous to those see n in long duration GRBs, which are believed to be of a massive-star origin (so-called Type II GRBs). We present the results of its early optical observations with the 0.8-m TNT telescope at Xinglong observatory, and the 1-m LOAO telescope at Mt. Lemmon Optical Astronomy Observatory in Arizona. Our well-sampled optical afterglow lightcurve covers from $sim 90$ seconds to $sim 10^4$ seconds post the GRB trigger. It shows two shallow decay episodes that are likely due to energy injection, which end at $sim 230$ seconds and $sim 7100$ seconds, respectively. The decay slopes post the injection phases are consistent with each other ($alphasimeq 1.22$). The X-ray afterglow lightcurve appears to trace the optical, although the second energy injection phase was missed due to visibility constraints introduced by the {em Swift} orbit. The X-ray spectral index is $beta_Xsim 1.0$ without temporal evolution. Its decay slope is consistent with the prediction of the forward shock model. Both X-ray and optical emission is consistent with being in the same spectral regime above the cooling frequency ($ u_c$). The fact that $ u_c$ is below the optical band from the very early epoch of the observation provides a constraint on the burst environment, which is similar to that seen in classical long duration GRBs. We therefore suggest that death of a massive star is the possible progenitor of this short burst.
We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind, Swift, and Fermi, GRB 091024A has prompt emission episodes covering ~1300 s, accompani ed by bright and highly structured optical emission captured by various rapid-response facilities, including the 2-m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and SRO. We also observed the burst with 8- and 10-m class telescopes and determine the redshift to be z = 1.0924 pm 0.0004. We find no correlation between the optical and gamma-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (R_B ~ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the Konus-Wind data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (>~ 1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.
293 - Lang Shao 2011
In an effort to understand the puzzle of classifying gamma-ray bursts (GRBs), we perform a systematic study of {it Swift} GRBs and investigate several short GRB issues. Though short GRBs have a short ($lesssim2$ s) prompt duration as monitored by the Burst Alert Telescope, the composite light curves including both the prompt and afterglow emission suggest that most of the short GRBs have a similar radiative feature to long GRBs. Further, some well-studied short GRBs might also have an intrinsically long prompt duration, which renders them as a type of short GRB imposters. Genuine short GRBs detected by {it Swift} might be rare that discriminating the observed short GRBs is, not surprisingly, troublesome. In particular, the observational biases in the host identification and redshift measurement of GRBs should be taken with great caution. The redshift distribution which has been found to be different for long and short GRBs might have been strongly affected by the measurement methods. We find that the redshifts measured from the presumed host galaxies of long and short GRBs appear to have a similar distribution.
We report on a 350-ks NuSTAR observation of the magnetar 1E 1841-045 taken in 2013 September. During the observation, NuSTAR detected six bursts of short duration, with $T_{90}<1$ s. An elevated level of emission tail is detected after the brightest burst, persisting for $sim$1 ks. The emission showed a power-law decay with a temporal index of 0.5 before returning to the persistent emission level. The long observation also provided detailed phase-resolved spectra of the persistent X-ray emission of the source. By comparing the persistent spectrum with that previously reported, we find that the source hard-band emission has been stable over approximately 10 years. The persistent hard X-ray emission is well fitted by a coronal outflow model, where $e^{+/-}$ pairs in the magnetosphere upscatter thermal X-rays. Our fit of phase-resolved spectra allowed us to estimate the angle between the rotational and magnetic dipole axes of the magnetar, $alpha_{mag}=0.25$, the twisted magnetic flux, $2.5times10^{26}rm G cm^2$, and the power released in the twisted magnetosphere, $L_j=6times10^{36}rm erg s^{-1}$. Assuming this model for the hard X-ray spectrum, the soft X-ray component is well fit by a two-blackbody model, with the hotter blackbody consistent with the footprint of the twisted magnetic field lines on the star. We also report on the 3-year Swift monitoring observations obtained since 2011 July. The soft X-ray spectrum remained stable during this period, and the timing behavior was noisy, with large timing residuals.
New generation TeV gamma-ray telescopes have discovered many new sources, including several enigmatic unidentified TeV objects. HESS J0632+057 is a particularly interesting unidentified TeV source since: it is a point source, it has a possible hard-s pectrum X-ray counterpart and a positionally consistent Be star, it has evidence of long-term VHE flux variability, and it is postulated to be a newly detected TeV/X-ray binary. We have obtained Swift X-ray telescope observations of this source from MJD 54857 to 54965, in an attempt to ascertain its nature and to investigate the hypothesis that its a previously unknown X-ray/TeV binary. Variability and spectral properties similar to those of the other 3 known X-ray/TeV binaries have been observed, with measured flux increases by factors of approximately 3. X-ray variability is present on multiple timescales including days to months; however, no clear signature of periodicity is present on the timescales probed by these data. If binary modulation is present and dominating the measured variability, then the period of the orbit is likely to be more than 54 days (half of this campaign), or it has a shorter period with a variable degree of flux modulation on successive high states. If the two high states measured to date are due to binary modulation, then the favored period is approximately 35-40 days. More observations are required to determine if this object is truly a binary system and to determine the extent that the measured variability is due to inter-orbit flaring effects or periodic binary modulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا