ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Closure Nulling: results from the 2009 campaign

126   0   0.0 ( 0 )
 نشر من قبل Fabien Malbet
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here a new observational technique, Phase Closure Nulling (PCN), which has the potential to obtain very high contrast detection and spectroscopy of faint companions to bright stars. PCN consists in measuring closure phases of fully resolved objects with a baseline triplet where one of the baselines crosses a null of the object visibility function. For scenes dominated by the presence of a stellar disk, the correlated flux of the star around nulls is essentially canceled out, and in these regions the signature of fainter, unresolved, scene object(s) dominates the imaginary part of the visibility in particular the closure phase. We present here the basics of the PCN method, the initial proof-of-concept observation, the envisioned science cases and report about the first observing campaign made on VLTI/AMBER and CHARA/MIRC using this technique.



قيم البحث

اقرأ أيضاً

Nulling interferometry is still a promising method to characterize spectra of exoplanets. One of the main issues is to cophase at a nanometric level each arm despite satellite disturbances. The bench PERSEE aims to prove the feasibility of that techn ique for spaceborne missions. After a short description of PERSEE, we will first present the results obtained in a simplified configuration: we have cophased down to 0.22 nm rms in optical path difference (OPD) and 60 mas rms in tip/tilt, and have obtained a monochromatic null of 3E-5 stabilized at 3E-6. The goal of 1 nm with additional typical satellite disturbances requires the use of an optimal control law; that is why we elaborated a dedicated Kalman filter. Simulations and experiments show a good rejection of disturbances. Performance of the bench should be enhanced by using a Kalman control law, and we should be able to reach the desired nanometric stability. Following, we will present the first results of the final polychromatic configuration, which includes an achromatic phase shifter, perturbators and optical delay lines. As a conclusion, we give the first more general lessons we have already learned from this experiment, both at system and component levels for a future space mission.
For short-wavelength VLBI observations, it is difficult to measure the phase of the visibility function accurately. The closure phases are reliable measurements under this situation, though it is not sufficient to retrieve all of the phase informatio n. We propose a new method, Phase Retrieval from Closure Phase (PRECL). PRECL estimates all the visibility phases only from the closure phases. Combining PRECL with a sparse modeling method we have already proposed, imaging process of VLBI does not rely on dirty image nor self-calibration. The proposed method is tested numerically and the results are promising.
Progress in astrometry and orbital modelling of planetary moons in the last decade enabled better determinations of their orbits. These studies need accurate positions spread over extended periods. We present the results of the 2014-2015 Brazilian ca mpaign for 40 mutual events from 47 observed light curves by the Galilean satellites plus one eclipse of Amalthea by Ganymede. We also reanalysed and updated results for 25 mutual events observed in the 2009 campaign. All telescopes were equipped with narrow-band filters centred at 889 nm with a width of 15 nm to eliminate the scattered light from Jupiter. The albedos ratio was determined using images before and after each event. We simulated images of moons, umbra, and penumbra in the sky plane, and integrated their fluxes to compute albedos, simulate light curves and fit them to the observed ones using a chi-square fitting procedure. For that, we used the complete version of the Oren-Nayer reflectance model. The relative satellite positions mean uncertainty was 11.2 mas ($sim$35 km) and 10.1 mas ($sim$31 km) for the 2014-2015 and 2009 campaigns respectively. The simulated and observed textsc{ascii} light curve files are freely available in electronic form at the textit{Natural Satellites DataBase} (NSDB). The 40/25 mutual events from our 2014-2015/2009 campaigns represent a significant contribution of 17%/15% in comparison with the PHEMU campaigns lead by the IMCCE. Besides that, our result for the eclipse of Amalthea is only the 4$^{th}$ such measurement ever published after the three ones observed by the 2014-2015 international PHEMU campaign. Our results are suitable for new orbital/ephemeris determinations for the Galilean moons and Amalthea.
Coronagraphy is a very efficient technique for identifying and characterizing extra-solar planets orbiting in the habitable zone of their parent star, especially when used in a space environment. An important family of coronagraphs is based on phase plates located at an intermediate image plane of the optical system, that spread the starlight outside the Lyot exit pupil plane of the instrument. In this communication we present a set of candidate phase functions generating a central null at the Lyot plane, and study how it propagates to the image plane of the coronagraph. These functions include linear azimuthal phase ramps (the well-known optical vortex), azimuthally cosine-modulated phase profiles, and circular phase gratings. Numerical simulations of the expected null depth, inner working angle, sensitivity to pointing errors, effect of central obscuration located at the pupil or image planes, and effective throughput including image mask and Lyot stop transmissions are presented and discussed. The preliminary conclusion is that azimuthal cosine functions appear as an interesting alternative to the classical optical vortex of integer topological charge.
We performed a 4.5-month multi-instrument campaign (from radio to VHE gamma rays) on Mrk421 between January 2009 and June 2009, which included VLBA, F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collabora tions. Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical/UV and X-rays extending over the duration of the campaign. The harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multi-wavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk421 during non-flaring activity. Such a temporally extended X-ray/VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. The highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا