ﻻ يوجد ملخص باللغة العربية
A cavity-polariton, formed due to the strong coupling between exciton and cavity mode, is one of the most promising composite bosons for realizing macroscopic spontaneous coherence at high temperature. Up to date, most of polariton quantum degeneracy experiments were conducted in the complicated two-dimensional (2D) planar microcavities. The role of dimensionality in coherent quantum degeneracy of a composite bosonic system of exciton polaritons remains mysterious. Here we report the first experimental observation of a one-dimensional (1D) polariton condensate in a ZnO microwire at room temperature. The massive occupation of the polariton ground state above a distinct pump power threshold is clearly demonstrated by using the angular resolved spectroscopy under non-resonant excitation. The power threshold is one order of magnitude lower than that of Mott transition. Furthermore, a well-defined far field emission pattern from the polariton condensate mode is observed, manifesting the coherence build-up in the condensed polariton system.
Interacting Bosons, loaded in artificial lattices, have emerged as a modern platform to explore collective manybody phenomena, quantum phase transitions and exotic phases of matter as well as to enable advanced on chip simulators. Such experiments st
A new platform for fabricating polariton lasers operating at room temperature is introduced: nitride-based distributed Bragg reflectors epitaxially grown on patterned silicon substrates. The patterning allows for an enhanced strain relaxation thereby
Exciton-polariton solitons are strongly nonlinear quasiparticles composed of coupled exciton-photon states due to the interaction of light with matter. In semiconductor microcavity systems such as semiconductor micro and nanowires, polaritons are cha
We perform quantum tomography on one-dimensional polariton condensates, spontaneously occurring in linear disorder valleys in a CdTe planar microcavity sample. By the use of optical interferometric techniques, we determine the first-order coherence f
Interacting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from non-trivial topology. Exciton-polaritons, bosonic quasi-particles of light and