ﻻ يوجد ملخص باللغة العربية
We report radial velocity measurements of the G-type subgiants 24 Sextanis (=HD90043) and HD200964. Both are massive, evolved stars that exhibit periodic variations due to the presence of a pair of Jovian planets. Photometric monitoring with the T12 0.80m APT at Fairborn Observatory demonstrates both stars to be constant in brightness to <= 0.002 mag, thus strengthening the planetary interpretation of the radial velocity variations. 24 Sex b,c have orbital periods of 453.8 days and 883~days, corresponding to semimajor axes 1.333 AU and 2.08 AU, and minimum masses (Msini) 1.99 Mjup and 0.86 Mjup, assuming a stellar mass 1.54 Msun. HD200964 b,c have orbital periods of 613.8 days and 825 days, corresponding to semimajor axes 1.601 AU and 1.95 AU, and minimum masses 1.85 Mjup and 0.90 Mjup, assuming M* = 1.44 Msun. We also carry out dynamical simulations to properly account for gravitational interactions between the planets. Most, if not all, of the dynamically stable solutions include crossing orbits, suggesting that each system is locked in a mean motion resonance that prevents close encounters and provides long-term stability. The planets in the 24 Sex system likely have a period ratio near 2:1, while the HD200964 system is even more tightly packed with a period ratio close to 4:3. However, we caution that further radial velocity observations and more detailed dynamical modelling will be required to provide definitive and unique orbital solutions for both cases, and to determine whether the two systems are truly resonant.
We report the detection of eighteen Jovian planets discovered as part of our Doppler survey of subgiant stars at Keck Observatory, with follow-up Doppler and photometric observations made at McDonald and Fairborn Observatories, respectively. The host
We present an analysis of ~5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass subgiants (1.5 < M*/Msun < 2.0) with the goal of measuring the occurrence rate of Jovian planets around (evolved) A
Given the frequency of stellar multiplicity in the solar neighborhood, it is important to study the impacts this can have on exoplanet properties and orbital dynamics. There have been numerous imaging survey projects established to detect possible lo
An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the p
To better understand how planets form, it is important to study planet occurrence rates as a function of stellar mass. However, estimating masses of field stars is often difficult. Over the past decade, a controversy has arisen about the inferred occ