ترغب بنشر مسار تعليمي؟ اضغط هنا

Retired A Stars and Their Companions VI. A Pair of Interacting Exoplanet Pairs Around the Subgiants 24 Sextanis and HD200964

198   0   0.0 ( 0 )
 نشر من قبل John Johnson
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report radial velocity measurements of the G-type subgiants 24 Sextanis (=HD90043) and HD200964. Both are massive, evolved stars that exhibit periodic variations due to the presence of a pair of Jovian planets. Photometric monitoring with the T12 0.80m APT at Fairborn Observatory demonstrates both stars to be constant in brightness to <= 0.002 mag, thus strengthening the planetary interpretation of the radial velocity variations. 24 Sex b,c have orbital periods of 453.8 days and 883~days, corresponding to semimajor axes 1.333 AU and 2.08 AU, and minimum masses (Msini) 1.99 Mjup and 0.86 Mjup, assuming a stellar mass 1.54 Msun. HD200964 b,c have orbital periods of 613.8 days and 825 days, corresponding to semimajor axes 1.601 AU and 1.95 AU, and minimum masses 1.85 Mjup and 0.90 Mjup, assuming M* = 1.44 Msun. We also carry out dynamical simulations to properly account for gravitational interactions between the planets. Most, if not all, of the dynamically stable solutions include crossing orbits, suggesting that each system is locked in a mean motion resonance that prevents close encounters and provides long-term stability. The planets in the 24 Sex system likely have a period ratio near 2:1, while the HD200964 system is even more tightly packed with a period ratio close to 4:3. However, we caution that further radial velocity observations and more detailed dynamical modelling will be required to provide definitive and unique orbital solutions for both cases, and to determine whether the two systems are truly resonant.



قيم البحث

اقرأ أيضاً

We report the detection of eighteen Jovian planets discovered as part of our Doppler survey of subgiant stars at Keck Observatory, with follow-up Doppler and photometric observations made at McDonald and Fairborn Observatories, respectively. The host stars have masses 0.927 < Mstar /Msun < 1.95, radii 2.5 < Rstar/Rsun < 8.7, and metallicities -0.46 < [Fe/H] < +0.30. The planets have minimum masses 0.9 MJup < MP sin i <3 MJup and semima jor axes a > 0.76 AU. These detections represent a 50% increase in the number of planets known to orbit stars more massive than 1.5 Msun and provide valuable additional information about the properties of planets around stars more massive thantheSun.
We present an analysis of ~5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass subgiants (1.5 < M*/Msun < 2.0) with the goal of measuring the occurrence rate of Jovian planets around (evolved) A -type stars and comparing the distributions of their orbital and physical characteristics to those of planets around Sun-like stars. We provide updated orbital solutions incorporating new radial velocity measurements for five known planet-hosting stars in our sample; uncertainties in the fitted parameters are assessed using a Markov Chain Monte Carlo method. The frequency of Jovian planets interior to 3 AU is 26 (+9,-8)%, which is significantly higher than the ~5-10% frequency observed around solar-mass stars. The median detection threshold for our sample includes minimum masses down to {0.2, 0.3, 0.5, 0.6, 1.3} MJup within {0.1, 0.3, 0.6, 1.0, 3.0} AU. To compare the properties of planets around intermediate-mass stars to those around solar-mass stars we synthesize a population of planets based on the parametric relationship dN ~ M^{alpha}P^{beta} dlnM dlnP, the observed planet frequency, and the detection limits we derived. We find that the values of alpha and beta for planets around solar-type stars from Cumming et al. fail to reproduce the observed properties of planets in our sample at the 4 sigma level, even when accounting for the different planet occurrence rates. Thus, the properties of planets around A stars are markedly different than those around Sun-like stars, suggesting that only a small (~ 50%) increase in stellar mass has a large influence on the formation and orbital evolution of planets.
Given the frequency of stellar multiplicity in the solar neighborhood, it is important to study the impacts this can have on exoplanet properties and orbital dynamics. There have been numerous imaging survey projects established to detect possible lo w-mass stellar companions to exoplanet host stars. Here we provide the results from a systematic speckle imaging survey of known exoplanet host stars. In total, 71 stars were observed at 692~nm and 880~nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. Our results show that all but 2 of the stars included in this sample have no evidence of stellar companions with luminosities down to the detection and projected separation limits of our instrumentation. The mass-luminosity relationship is used to estimate the maximum mass a stellar companion can have without being detected. These results are used to discuss the potential for further radial velocity follow-up and interpretation of companion signals.
An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the p resence of two or more stars within a system can place further constraints on planetary formation, evolution, and orbital dynamics. As part of our survey of almost a hundred host stars, we obtained images at 692 nm and 880 nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. From our survey, we detect stellar companions to HD 2638 and HD 164509. The stellar companion to HD 2638 has been previously detected, but the companion to HD 164509 is a newly discovered companion. The angular separation for HD 2638 is $0.512 pm 0.002arcsec$ and for HD 164509 is $0.697 pm 0.002arcsec$. This corresponds to a projected separation of $25.6 pm 1.9$ AU and $36.5 pm 1.9$ AU, respectively. By employing stellar isochrone models, we estimate the mass of the stellar companions of HD 2638 and HD 164509 to be $0.483 pm 0.007$ $M_sun$ and $0.416 pm 0.007$ $M_sun$, respectively, and their effective temperatures to be $3570 pm 8$~K and $3450 pm 7$~K, respectively. These results are consistent with the detected companions being late-type M dwarfs.
82 - D. Stello 2017
To better understand how planets form, it is important to study planet occurrence rates as a function of stellar mass. However, estimating masses of field stars is often difficult. Over the past decade, a controversy has arisen about the inferred occ urrence rate of gas-giant planets around evolved intermediate-mass stars -- the so-called `retired A-stars. The high masses of these red-giant planet hosts, derived using spectroscopic information and stellar evolution models, have been called into question. Here we address the controversy by determining the masses of eight evolved planet-hosting stars using asteroseismology. We compare the masses with spectroscopic-based masses from the Exoplanet Orbit Database that were previously adopted to infer properties of the exoplanets and their hosts. We find a significant one-sided offset between the two sets of masses for stars with spectroscopic masses above roughly 1.6Msun, suggestive of an average 15--20% overestimate of the adopted spectroscopic-based masses. The only star in our sample well below this mass limit is also the only one not showing this offset. Finally, we note that the scatter across literature values of spectroscopic-based masses often exceed their formal uncertainties, making it comparable to the offset we report here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا