ﻻ يوجد ملخص باللغة العربية
Motivated by recent experiments with confined binary liquid mixtures near their continous demixing phase transition we study the critical behavior of a system, which belongs to the Ising universality class, for the film geometry with one planar wall chemically structured such that there is a laterally alternating adsorption preference for the species of the binary liquid mixture. By means of Monte Carlo simulations and finite-size scaling analysis we determine the critical Casimir force and the corresponding universal scaling function.
A recent Letter [Phys. Rev. Lett. 103, 156101 (2009)] reports the experimental observation of aggregation of colloidal particles dispersed in a liquid mixture of heavy water and 3-methylpyridine. The experimental data are interpreted in terms of a mo
If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter
Critical Casimir forces emerge between objects, such as colloidal particles, whenever their surfaces spatially confine the fluctuations of the order parameter of a critical liquid used as a solvent. These forces act at short but microscopically large
Among the various kinds of effective forces in soft matter, the spatial range and the direction of the so-called critical Casimir force - which is generated by the enhanced thermal fluctuations close to a continuous phase transition - can be controll
Colloids immersed in a critical or near-critical binary liquid mixture and close to a chemically patterned substrate are subject to normal and lateral critical Casimir forces of dominating strength. For a single colloid we calculate these attractive