ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic properties of pseudomorphic epitaxial films of Pr_{0.7}Ca_{0.3}MnO_3 under different biaxial tensile stresses

136   0   0.0 ( 0 )
 نشر من قبل Alessandra Geddo Lehmann
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to analyse the effect of strain on the magnetic properties of narrow-band manganites, the temperature and field dependent susceptibilities of about 8.5 nm thick epitaxial Pr0.7Ca0.3MnO3 films, respectively grown on (001) and (110) SrTiO3 substrates, have been compared. For ultrathin samples grown on (001) SrTiO3, a bulk-like cluster-glass magnetic behaviour is found, indicative of the possible coexistence of antiferromagnetic and ferromagnetic phases. On the contrary, ultrathin films grown on (110) substrates show a robust ferromagnetism, with a strong spontaneous magnetization of about 3.4 mB /Mn atom along the easy axis. On the base of high resolution reciprocal space mapping analyses performed by x-ray diffraction, the different behaviours are discussed in terms of the crystallographic constraints imposed by the epitaxy of Pr0.7Ca0.3MnO3 on SrTiO3. We suggest that for growth on (110) SrTiO3, the tensile strain on the film c-axis, lying within the substrate plane, favours the ferromagnetic phase, possibly by allowing a mixed occupancy and hybridization of both in-plane and out-of-plane eg orbitals. Our data allow to shed some physics of inhomogeneous states in manganites and on the nature of their ferromagnetic insulating state.



قيم البحث

اقرأ أيضاً

$La_{0.7}Ca_{0.3}MnO_3$ samples were prepared in nano- and polycrystalline forms by sol-gel and solid state reaction methods, respectively, and structurally characterized by synchrotron X-ray diffraction. The magnetic properties determined by ac susc eptibility and dc magnetization measurements are discussed. The magnetocaloric effect in this nanocrystalline manganite is spread over a broader temperature interval than in the polycrystalline case. The relative cooling power of the poly- and nanocrystalline manganites is used to evaluate a possible application for magnetic cooling below room temperature.
We present a detailed magnetothermal study of Pr(0.7)Ca(0.3)MnO(3), a perovskite manganite in which an insulator-metal transition can be driven by magnetic field, but also by pressure, visible light, x-rays, or high currents. We find that the field-i nduced transition is associated with an enormous release of energy which accounts for its strong irreversibility. In the ferromagnetic metallic state, specific heat and magnetization measurements indicate a much smaller spin wave stiffness than that seen in any other manganite, which we attribute to spin waves among the ferromagnetically ordered Pr moments. The coupling between the Pr and Mn spins may also provide a basis for understanding the low temperature phase diagram of this most unusual manganite.
La$_{0.7}$Ce$_{0.3}$MnO$_3$ thin films of different thicknesses, degrees of CeO$_2$-phase segregation and oxygen deficiency, grown on SrTiO$_3$ single crystal substrates, were comparatively investigated with respect to both their spectral and tempera ture-dependent photoconductivity (PC) and their magnetoresistance (MR) behaviour under photoexcitation. While as-grown films were insensitive to optical excitation, oxygen reduction appeared to be an effective way to decrease the film resistance, but the film thickness was found to play a minor role. However, from the evaluation of the spectral behaviour of the PC and the comparison of the MR of the LCeMO/substrate-samples with a bare substrate under illumination we find that the photoconductivity data reflects not only contributions from (i) photogenerated charge carriers in the film and (ii) carriers injected from the photoconductive substrate (as concluded from earlier works), but also (iii) a decisive parallel photoconduction in the SrTiO$_3$ substrate. Furthermore -- also by analyzing the MR characteristics -- the unexpected occurence of a strong electroresistive effect in the sample with the highest degree of CeO$_2$ segregation and oxygen deficiency could be attributed to the electroresistance of the SrTiO$_3$ substrate as well. The results suggest a critical reconsideration and possibly a reinterpretation of several previous photoconductivity and electroresistance investigations of manganite thin films on SrTiO$_3$.
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented SrTiO3 substrates. Phase-pure films with optimum crystallographic and magnetic properties were obtained by growing at a substrate temperature of 700 degree C in pure O2 of 6.6x10-4 mbar. The films are c-axis oriented, coherently strained, and show less than 20% anti-site defects. The magnetization curves reveal high saturation magnetization of 0.8 muB per formula unit and high coercivity of 1.1 T, as well as a strong magnetic anisotropy.
CaFe2O4 is a highly anisotropic antiferromagnet reported to display two spin arrangements with up-up-down-down (phase A) and up-down-up-down (phase B) configurations. The relative stability of these phases is ruled by the competing ferromagnetic and antiferromagnetic interactions between Fe3+ spins arranged in two different environments, but a complete understanding of the magnetic structure of this material does not exist yet. In this study we investigate epitaxial CaFe2O4 thin films grown on TiO2 (110) substrates by means of Pulsed Laser Deposition (PLD). Structural characterization reveals the coexistence of two out-of-plane crystal orientations and the formation of three in-plane oriented domains. The magnetic properties of the films, investigated macroscopically as well as locally, including highly sensitive Mossbauer spectroscopy, reveal the presence of just one order parameter showing long-range ordering below T = 185 K and the critical nature of the transition. In addition, a non-zero in-plane magnetization is found, consistent with the presence of uncompensated spins at phase or domain boundaries, as proposed for bulk samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا