ترغب بنشر مسار تعليمي؟ اضغط هنا

An unfitted $hp$-interface penalty finite element method for elliptic interface problems

436   0   0.0 ( 0 )
 نشر من قبل Haijun Wu
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An $hp$ version of interface penalty finite element method ($hp$-IPFEM) is proposed for elliptic interface problems in two and three dimensions on unfitted meshes. Error estimates in broken $H^1$ norm, which are optimal with respect to $h$ and suboptimal with respect to $p$ by half an order of $p$, are derived. Both symmetric and non-symmetric IPFEM are considered. Error estimates in $L^2$ norm are proved by the duality argument.



قيم البحث

اقرأ أيضاً

145 - Zhiming Chen , Ke Li , 2020
We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which allows us to prove the stability of the finite element method under practical interface resolving mesh conditions and also prove the lower bound of the hp a posteriori error estimate. Numerical examples are included.
195 - Hailong Guo , Xu Yang 2021
In this paper, we propose a deep unfitted Nitsche method for computing elliptic interface problems with high contrasts in high dimensions. To capture discontinuities of the solution caused by interfaces, we reformulate the problem as an energy minimi zation involving two weakly coupled components. This enables us to train two deep neural networks to represent two components of the solution in high-dimensional. The curse of dimensionality is alleviated by using the Monte-Carlo method to discretize the unfitted Nitsche energy function. We present several numerical examples to show the efficiency and accuracy of the proposed method.
An interface/boundary-unfitted eXtended hybridizable discontinuous Galerkin (X-HDG) method of arbitrary order is proposed for linear elasticity interface problems on unfitted meshes with respect to the interface and domain boundary. The method uses p iecewise polynomials of degrees $k (>= 1)$ and $k-1$ respectively for the displacement and stress approximations in the interior of elements inside the subdomains separated by the interface, and piecewise polynomials of degree $k$ for the numerical traces of the displacement on the inter-element boundaries inside the subdomains and on the interface/boundary of the domain. Optimal error estimates in $L^2$-norm for the stress and displacement are derived. Finally, numerical experiments confirm the theoretical results and show that the method also applies to the case of crack-tip domain.
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterat ive Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.
The locally modified finite element method, which is introduced in [Frei, Richter: SINUM 52(2014), p. 2315-2334] is a simple fitted finite element method that is able to resolve weak discontinuities in interface problems. The method is based on a fix ed structured coarse mesh, which is then refined into sub-elements to resolve an interior interface. In this work, we extend the locally modified finite element method to second order using an isoparametric approach in the interface elements. Thereby we need to take care that the resulting curved edges do not lead to degenerate sub-elements. We prove optimal a priori error estimates in the $L^2$-norm and in a modified energy norm, as well as a reduced convergence order of ${cal O}(h^{3/2})$ in the standard $H^1$-norm. Finally, we present numerical examples to substantiate the theoretical findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا