ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Clusters at z>=1: Gas Constraints from the Sunyaev-Zeldovich Array

152   0   0.0 ( 0 )
 نشر من قبل Thomas Culverhouse
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present gas constraints from Sunyaev-Zeldovich (SZ) effect measurements in a sample of eleven X-ray and infrared (IR) selected galaxy clusters at z >=1, using data from the Sunyaev-Zeldovich Array (SZA). The cylindrically integrated Compton-y parameter, Y , is calculated by fitting the data to a two-parameter gas pressure profile. Where possible, we also determine the temperature of the hot intra-cluster plasma from Chandra and XMM-Newton data, and constrain the gas mass within the same aperture (r_2500 ) as Y . The SZ effect is detected in the clusters for which the X-ray data indicate gas masses above ~ 10^13 Msun, including XMMU J2235-2557 at redshift z = 1.39, which to date is one of the most distant clusters detected using the SZ effect. None of the IR-selected targets are detected by the SZA measurements, indicating low gas masses for these objects. For these and the four other undetected clusters, we quote upper limits on Y and Mgas_SZ , with the latter derived from scaling relations calibrated with lower redshift clusters. We compare the constraints on Y and X-ray derived gas mass Mgas_X-ray to self-similar scaling relations between these observables determined from observations of lower redshift clusters, finding consistency given the measurement error.



قيم البحث

اقرأ أيضاً

We present CARMA 30 GHz Sunyaev-Zeldovich (SZ) observations of five high-redshift ($z gtrsim 1$), infrared-selected galaxy clusters discovered as part of the all-sky Massive and Distant Clusters of WISE Survey (MaDCoWS). The SZ decrements measured to ward these clusters demonstrate that the MaDCoWS selection is discovering evolved, massive galaxy clusters with hot intracluster gas. Using the SZ scaling relation calibrated with South Pole Telescope clusters at similar masses and redshifts, we find these MaDCoWS clusters have masses in the range $M_{200} approx 2-6 times 10^{14}$ $M_odot$. Three of these are among the most massive clusters found to date at $zgtrsim 1$, demonstrating that MaDCoWS is sensitive to the most massive clusters to at least $z = 1.3$. The added depth of the AllWISE data release will allow all-sky infrared cluster detection to $z approx 1.5$ and beyond.
123 - Scott T. Kay 2011
We have exploited the large-volume Millennium Gas cosmological N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samples that the intrinsic (spherical) Y_{500}-M_{500} relation has very little scatter (sigma_{log_{10}Y}~0.04), is insensitive to cluster gas physics and evolves to redshift one in accord with self-similar expectations. Our pre-heating and feedback models predict scaling relations that are in excellent agreement with the recent analysis from combined Planck and XMM-Newton data by the Planck Collaboration. This agreement is largely preserved when r_{500} and M_{500} are derived using the hydrostatic mass proxy, Y_{X,500}, albeit with significantly reduced scatter (sigma_{log_{10}Y}~0.02), a result that is due to the tight correlation between Y_{500} and Y_{X,500}. Interestingly, this assumption also hides any bias in the relation due to dynamical activity. We also assess the importance of projection effects from large-scale structure along the line-of-sight, by extracting cluster Y_{500} values from fifty simulated 5x5 square degree sky maps. Once the (model-dependent) mean signal is subtracted from the maps we find that the integrated SZ signal is unbiased with respect to the underlying clusters, although the scatter in the (cylindrical) Y_{500}-M_{500} relation increases in the pre-heating case, where a significant amount of energy was injected into the intergalactic medium at high redshift. Finally, we study the hot gas pressure profiles to investigate the origin of the SZ signal and find that the largest contribution comes from radii close to r_{500} in all cases. The profiles themselves are well described by generalised Navarro, Frenk & White profiles but there is significant cluster-to-cluster scatter.
The masses of galaxy clusters are a key tool to constrain cosmology through the physics of large-scale structure formation and accretion. Mass estimates based on X-ray and Sunyaev--Zeldovich measurements have been found to be affected by the contribu tion of non-thermal pressure components, due e.g. to kinetic gas energy. The characterization of possible ordered motions (e.g. rotation) of the intra-cluster medium could be important to recover cluster masses accurately. We update the study of gas rotation in clusters through the maps of the kinetic Sunyaev--Zeldovich effect, using a large sample of massive synthetic galaxy clusters ($ M_{vir} > 5times 10^{14} h^{-1}$M$_odot$ at $z~=~0 $) from MUSIC high-resolution simulations. We select few relaxed objects showing peculiar rotational features, as outlined in a companion work. To verify whether it is possible to reconstruct the expected radial profile of the rotational velocity, we fit the maps to a theoretical model accounting for a specific rotational law, referred as the vp2b model. We find that our procedure allows to recover the parameters describing the gas rotational velocity profile within two standard deviations, both with and without accounting for the bulk velocity of the cluster. The amplitude of the temperature distortion produced by the rotation is consistent with theoretical estimates found in the literature, and it is of the order of 23 per cent of the maximum signal produced by the cluster bulk motion. We also recover the bulk velocity projected on the line of sight consistently with the simulation true value.
The properties of galaxy clusters as a function of redshift can be utilized as an important cosmological tool. We present initial results from a program of follow-up observations of the Sunyaev-Zeldovich effect (SZE) in high redshift galaxy clusters detected at infrared wavelengths in the Massive and Distant Clusters of WISE Survey (MaDCoWS). Using typical on-source integration times of 3-4 hours per cluster, MUSTANG2 on the Green Bank Telescope was able to measure strong detections of SZE decrements and statistically significant masses on 14 out of 16 targets. On the remaining two, weaker (3.7 sigma) detections of the SZE signal and strong upper limits on the masses were obtained. In this paper we present masses and pressure profiles of each target and outline the data analysis used to recover these quantities. Of the clusters with strong detections, three show significantly flatter pressure profiles while, from the MUSTANG2 data, five others show signs of disruption at their cores. However, outside of the cores of the clusters, we were unable to detect significant amounts of asymmetry. Finally, there are indications that the relationship between optical richness used by MaDCoWS and SZE-inferred mass may be significantly flatter than indicated in previous studies.
We present the results of optical identifications and spectroscopic redshifts measurements for galaxy clusters from 2-nd Planck catalogue of Sunyaev-Zeldovich sources (PSZ2), located at high redshifts, $zapprox0.7-0.9$. We used the data of optical ob servations obtained with Russian-Turkish 1.5-m telescope (RTT150), Sayan observatory 1.6-m telescope, Calar Alto 3.5-m telescope and 6-m SAO RAS telescope (Bolshoi Teleskop Alt-azimutalnyi, BTA). Spectroscopic redshift measurements were obtained for seven galaxy clusters, including one cluster, PSZ2 G126.57+51.61, from the cosmological sample of PSZ2 catalogue. In central regions of two clusters, PSZ2 G069.39+68.05 and PSZ2 G087.39-34.58, the strong gravitationally lensed background galaxies are found, one of them at redshift $z=4.262$. The data presented below roughly double the number of known galaxy clusters in the second Planck catalogue of Sunyaev-Zeldovich sources at high redshifts, $zapprox0.8$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا