ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent control of diffuse light dynamics in an ultracold atomic gas

178   0   0.0 ( 0 )
 نشر من قبل Mark D. Havey
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that coherent multiple light scattering, or diffuse light propagation, in a disordered atomic medium, prepared at ultra-low temperatures, can be be effectively delayed in the presence of a strong control field initiating a stimulated Raman process. On a relatively short time scale, when the atomic system can preserve its configuration and effects of atomic motion can be ignored, the scattered signal pulse, diffusely propagating via multiple coherent scattering through the medium, can be stored in the spin subsystem through its stimulated Raman-type conversion into spin coherence. We demonstrate how this mechanism, potentially interesting for developing quantum memories, would work for the example of a coherent light pulse propagating through an alkali-metal atomic vapor under typical conditions attainable in experiments with ultracold atoms.



قيم البحث

اقرأ أيضاً

The coupling of atomic arrays and one-dimensional subwavelength waveguides gives rise to in- teresting photon transport properties, such as recent experimental demonstrations of large Bragg reflection and paves the way for a variety of potential appl ications in the field of quantum non-linear optics. Here, we present a theoretical analysis for the process of single-photon scattering in this configuration using a full microscopic approach. Based on this formalism, we analyze the spectral dependencies for different scattering channels from either ordered or disordered arrays. The de- veloped approach is entirely applicable for a single-photon scattering from a quasi-one-dimensional array of multilevel atoms with degenerate ground state energy structure. Our approach provides an important framework for including not only Rayleigh but also Raman channels in the microscopic description of the cooperative scattering process.
We investigate the spatio-temporal evolution of a Gaussian probe pulse propagating through a four-level $N$-type atomic medium. At two-photon resonance of probe-and control fields, weaker probe pulses may propagate through the medium with low absorpt ion and pulse shape distortion. In contrast, we find that increasing the probe pulse intensity leads to a splitting of the initially Gaussian pulse into a sequence of subpulses in the time domain. The number of subpulses arising throughout the propagation can be controlled via a suitable choice of the probe and control field parameters. Employing a simple theoretical model for the nonlinear pulse propagation, we conclude that the splitting occurs due to an interplay of Kerr nonlinearity and group velocity dispersion.
We identify significant quantum many-body effects, robust to position fluctuations and strong dipole--dipole interactions, in the forward light scattering from planar arrays and uniform-density disks of cold atoms, by comparing stochastic electrodyna mics simulations of a quantum master equation and of a semiclassical model that neglects quantum fluctuations. Quantum effects are pronounced at high atomic densities, light close to saturation intensity, and around subradiant resonances. We show that such conditions also maximize spin--spin correlations and entanglement of formation for the atoms, revealing the microscopic origin of light-induced quantum effects. In several regimes of interest, an enhanced semiclassical model with a single-atom quantum description reproduces light transmission remarkably well, and permits analysis of otherwise numerically inaccessible large ensembles, in which we observe collective many-body analogues of resonance power broadening, vacuum Rabi splitting, and significant suppression in cooperative reflection from atomic arrays.
In a non-reciprocal optical amplifier, gain depends on whether the light propagates forwards or backwards through the device. Typically, one requires either the magneto-optical effect, a temporal modulation, or an optical nonlinearity to break recipr ocity. By contrast, here, we demonstrate non-reciprocal amplification of fibre-guided light using Raman gain provided by spin-polarized atoms that are coupled to the nanofibre waist of a tapered fibre section. The non-reciprocal response originates from the propagation direction-dependent local polarization of the nanofibre-guided mode in conjunction with polarization-dependent atom-light coupling. We show that this novel mechanism does not require an external magnetic field and that it allows us to fully control the direction of amplification via the atomic spin state. Our results may simplify the construction of complex optical networks. Moreover, suitable solid-state based quantum emitters provided, our scheme could be readily implemented in photonic integrated circuits.
121 - Kamal P Singh , Jan M Rost 2010
We investigate dynamics of atomic and molecular systems exposed to intense, shaped chaotic fields and a weak femtosecond laser pulse theoretically. As a prototype example, the photoionization of a hydrogen atom is considered in detail. The net photoi onization undergoes an optimal enhancement when a broadband chaotic field is added to the weak laser pulse. The enhanced ionization is analyzed using time-resolved wavepacket evolution and the population dynamics of the atomic levels. We elucidate the enhancement produced by spectrally-shaped chaotic fields of two different classes, one with a tunable bandwidth and another with a narrow bandwidth centered at the first atomic transition. Motivated by the large bandwidth provided in the high harmonic generation, we also demonstrate the enhancement effect exploiting chaotic fields synthesized from discrete, phase randomized, odd-order and all-order high harmonics of the driving pulse. These findings are generic and can have applications to other atomic and simple molecular systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا