ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionization of 1D and 3D oriented asymmetric top molecules by intense circularly polarized femtosecond laser pulses

129   0   0.0 ( 0 )
 نشر من قبل Frank Filsinger
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a combined experimental and theoretical study on strong-field ionization of a three-dimensionally oriented asymmetric top molecule, benzonitrile (C$_7$H$_5$N), by circularly polarized, nonresonant femtosecond laser pulses. Prior to the interaction with the strong field, the molecules are quantum-state selected using a deflector, and 3-dimensionally (3D) aligned and oriented adiabatically using an elliptically polarized laser pulse in combination with a static electric field. A characteristic splitting in the molecular frame photoelectron momentum distribution reveals the position of the nodal planes of the molecular orbitals from which ionization occurs. The experimental results are supported by a theoretical tunneling model that includes and quantifies the splitting in the momentum distribution. The focus of the present article is to understand strong-field ionization from 3D-oriented asymmetric top molecules, in particular the suppression of electron emission in nodal planes of molecular orbitals. In the preceding article [Dimitrovski et al., Phys. Rev. A 83, 023405 (2011)] the focus is to understand the strong-field ionization of one-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons.



قيم البحث

اقرأ أيضاً

We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of Neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distr ibutions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the sub-cycle dynamics of the recollision process. Our work reveals a general physical picture for recollision-impact double ionization with elliptical polarization, and demonstrates the possibility of ultrafast control of the recollision dynamics.
123 - T. V. Liseykina , A. Macchi 2007
The characteristics of a MeV ion source driven by superintense, ultrashort laser pulses with circular polarization are studied by means of particle-in-cell simulations. Predicted features include high efficiency, large ion density, low divergence and the possibility of femtosecond duration. A comparison with the case of linearly polarized pulses is made.
Triple-differential cross sections for two-photon double ionization of molecular hydrogen are presented for a central photon energy of 30 eV. The calculations are based on a fully {it ab initio}, nonperturbative, approach to the time-dependent Schroe dinger equation in prolate spheroidal coordinates, discretized by a finite-element discrete-variable-representation. The wave function is propagated in time for a few femtoseconds using the short, iterative Lanczos method to study the correlated response of the two photoelectrons to short, intense laser radiation. The current results often lie in between those of Colgan {it et al} [J. Phys. B {bf 41} (2008) 121002] and Morales {it et al} [J. Phys. B {bf 41} (2009) 134013]. However, we argue that these individual predictions should not be compared directly to each other, but preferably to experimental data generated under well-defined conditions.
The laser-induced fragmentation dynamics of this most fundamental polar molecule HeH$^+$ are measured using an ion beam of helium hydride and an isotopologue at various wavelengths and intensities. In contrast to the prevailing interpretation of stro ng-field fragmentation, in which stretching of the molecule results primarily from laser-induced electronic excitation, experiment and theory for nonionizing dissociation, single ionization and double ionization both show that the direct vibrational excitation plays the decisive role here. We are able to reconstruct fragmentation pathways and determine the times at which each ionization step occurs as well as the bond length evolution before the electron removal. The dynamics of this extremely asymmetric molecule contrast the well-known symmetric systems leading to a more general picture of strong-field molecular dynamics and facilitating interpolation to systems between the two extreme cases.
The yield of strong-field ionization, by a linearly polarized probe pulse, is studied experimentally and theoretically, as a function of the relative orientation between the laser field and the molecule. Experimentally, carbonyl sulfide, benzonitrile and naphthalene molecules are aligned in one or three dimensions before being singly ionized by a 30 fs laser pulse centered at 800 nm. Theoretically, we address the behaviour of these three molecules. We consider the degree of alignment and orientation and model the angular dependence of the total ionization yield by molecular tunneling theory accounting for the Stark shift of the energy level of the ionizing orbital. For naphthalene and benzonitrile the orientational dependence of the ionization yield agrees well with the calculated results, in particular the observation that ionization is maximized when the probe laser is polarized along the most polarizable axis. For OCS the observation of maximum ionization yield when the probe is perpendicular to the internuclear axis contrasts the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا