ﻻ يوجد ملخص باللغة العربية
We consider the online stochastic matching problem proposed by Feldman et al. [FMMM09] as a model of display ad allocation. We are given a bipartite graph; one side of the graph corresponds to a fixed set of bins and the other side represents the set of possible ball types. At each time step, a ball is sampled independently from the given distribution and it needs to be matched upon its arrival to an empty bin. The goal is to maximize the number of allocations. We present an online algorithm for this problem with a competitive ratio of 0.702. Before our result, algorithms with a competitive ratio better than $1-1/e$ were known under the assumption that the expected number of arriving balls of each type is integral. A key idea of the algorithm is to collect statistics about the decisions of the optimum offline solution using Monte Carlo sampling and use those statistics to guide the decisions of the online algorithm. We also show that our algorithm achieves a competitive ratio of 0.705 when the rates are integral. On the hardness side, we prove that no online algorithm can have a competitive ratio better than 0.823 under the known distribution model (and henceforth under the permutation model). This improves upon the 5/6 hardness result proved by Goel and Mehta cite{GM08} for the permutation model.
We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution ov
Online bipartite matching with edge arrivals remained a major open question for a long time until a recent negative result by [Gamlath et al. FOCS 2019], who showed that no online policy is better than the straightforward greedy algorithm, i.e., no o
The rich literature on online Bayesian selection problems has long focused on so-called prophet inequalities, which compare the gain of an online algorithm to that of a prophet who knows the future. An equally-natural, though significantly less well-
Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal compe
We study an online hypergraph matching problem with delays, motivated by ridesharing applications. In this model, users enter a marketplace sequentially, and are willing to wait up to $d$ timesteps to be matched, after which they will leave the syste